
Aalborg Universitet
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:

Indexing Moving Objects Using Layered
Space-Filling Curves

Project period:
Dat5, Sep. 2th 2005 - Jan. 9th, 2006

Project group:
E4-110

Group members:
Jens Frøkjær
Palle B. Hansen
Ivan V. S. Larsen
Tom Oddershede

Supervisor:
Kristian Torp

Copies: 6

Article page count: 15

Abstract:

Indexing moving objects with spatial exten-

sion is very useful in many application areas.

Today the dominant data structure for index-

ing spatial objects is the R-tree family. In

this paper, we present a method, based on

space-filling curves and B+-trees that uses lay-

ers in order to assign only one space-filling

index to each object. The main purpose of

this approach is to speed up modifications.

When dealing with moving objects the num-

ber of modifications is often orders of magni-

tude larger than the number of queries. We

present a method for shifting layers that guar-

antees that objects of a certain size can fit on a

layer in order to minimize the number of lay-

ers while retaining good selectivity. We also

show how range and nearest neighbour queries

are performed. Finally a performance study

is presented and the results are compared to

both the R+-tree and the canonical approach

for indexing spatial objects using space-filling

curves. The study shows that the R+-tree has

98% more overhead when modifying compared

to our method. This comes at the expense of

52% slower queries for our method.

Jens Frøkjær Palle B. Hansen

Ivan V. S. Larsen Tom Oddershede

Indexing Moving Objects Using Layered Space-Filling Curves

Jens Frøkjær, Palle B. Hansen, Ivan V. S. Larsen, and Tom Oddershede
Department of Computer Science, Aalborg University

{fr0,palle,ivanvsl,tom}@cs.aau.dk

January 9, 2006

Abstract

Indexing moving objects with spatial extension is very useful in many application areas. Today the
dominant data structure for indexing spatial objects is the R-tree family. In this paper, we present
a method, based on space-filling curves and B+-trees that uses layers in order to assign only one
space-filling index to each object. The main purpose of this approach is to speed up modifications.
When dealing with moving objects the number of modifications is often orders of magnitude larger
than the number of queries. We present a method for shifting layers that guarantees that objects
of a certain size can fit on a layer in order to minimize the number of layers while retaining
good selectivity. We also show how range and nearest neighbour queries are performed. Finally a
performance study is presented and the results are compared to both the R+-tree and the canonical
approach for indexing spatial objects using space-filling curves. The study shows that the R+-tree
has 98% more overhead when modifying compared to our method. This comes at the expense of
52% slower queries for our method.

1 Introduction

With the growth of mobile computing it has become
possible to constantly track the location of moving ob-
jects, hence the need for location-based services is in-
creasing rapidly. Such services have a wide variety of
applications such as a shipping company keeping track
of its ships and containers, biologists researching how
different shoals of fish are moving, and telephone com-
pany knowing at all times where their customers’ mo-
bile phones are located. All of these application areas
have in common that the location of the object must
be transmitted to the relevant service.

One could imagine that the number of modifica-
tions are orders of magnitude larger than the num-
ber of queries, and the ability to handle large amounts
of moving objects will be of even greater importance
in the future as new location-aware services arise
based on, e.g., RFID[Inc03] and Galileo[Tra05]. When
RFID-tags become integrated in more and more prod-
ucts, data can be collected for later analysis. For exam-

ple tracking the movement of customers in supermar-
kets, and using the data for optimizing store layout.
The European Union is about to launch its GPS coun-
terpart, the Galileo system which will provide more
devices with location information.

The previously stated technologies have the poten-
tial to become areas of interests for spatial indexing.
Due to the more moving location-aware devices and
services that need to keep track of all of them, the
result is more frequent updates.

The dominant indexing technique for spatial objects
is the R+-tree. However, it is rather expensive to
maintain[KBPR00].

This problem can be solved by using a B+-tree,
which performs better than R+-trees, when heavy
modification occurs[KBPR00]. The B+-tree only sup-
ports indexing points in a one-dimensional space. If
spatial objects are to be indexed by a B+-tree, a map-
ping from two dimensions to one is needed[OT02].

Space-filling curves is a method that is well suited for
reducing the number of dimensions. The most popular

1

is the Hilbert space-filling curve that has very good
clustering properties[MJFS01].

Canonical use of space-filling curves for spatial ob-
jects may cause much I/O, as the objects potentially
are stored multiple times in the database[BKK99].

The method described in this article uses space-
filling curves in a layered approach. This optimizes
the modification speed of the moving objects in the
database management system (DBMS) as we only as-
sign one id to each object in order to store the object
only once in the database. The focus of this article is
on moving objects in a two-dimensional space.

This article is structured as follows. In Section 2 re-
lated work is presented. Background knowledge is pre-
sented in Section 3. Our method for indexing moving
objects using layered space-filling curves is presented in
Section 4. An extension to layered space-filling curves
is to shift the layers, which is described in Section 5.
Query types and their implementations is the topic of
Section 6. In Section 7, a number of performance tests
are described, and results are presented. Finally, Sec-
tion 8 concludes the paper.

2 Related Work

Much work has been done within the area of indexing
moving objects. This section is structured as follows:
Firstly we shall look at work done within the area of
R-trees. Then we will look at work regarding indexing
spatial objects using space-filling curves. Finally, we
shall look at different tools for data generation.

Indexing moving objects can be done in several dif-
ferent ways. Popular and efficient indexing method are
the R-tree[Gut84] and the R+-tree[SRF87]. Although
they are applicable in many different situations, there
are some problems with these data structures. For ex-
ample parameters for good retrieval performance in the
R-tree affect each other in ways which makes it impos-
sible to optimize one of them without loss in the over-
all performance [BKSS90]. Therefore, [BKSS90] intro-
duces the R*-tree as a method of coping with these
problems.

The TPR-tree [SJLL00] is based on the R*-tree.
The TPR-tree is a very efficient indexing and querying
method for moving points for current and predicted
future positions. The paper also provides a workload
generator that simulates objects moving along routes
between destinations, and generates both modification
and retrieval queries. We differ from this work as we

want to index moving objects with spatial extent, but
only the current positions. Hence we cannot use their
workload generator.

As described in [OT02], B-trees have proven to be
a very efficient index for many different types of data.
Although the B-trees are intended for indexing objects
with only zero dimensions it can be used to index mul-
tidimensional data by utilizing other dimensionality-
reducing techniques. Our work is similar to the de-
scription [OT02] give of how to index spatial extended
objects. This technique partitions the space into cells
of uniform size, and each cell is given a unique id.
This id could for example be assigned using the Hilbert
space-filling curve [FR89]. An object with spatial ex-
tension may not be able to fit into a single cell. There-
fore one object may have several cell ids. This compli-
cates modifications and queries.

To prevent an object from having several cell ids,
we use a layered or hierarchical approach like[YPK05].
Like [YPK05], we use a hierarchical structure to min-
imize the number of objects to be searched to answer
a query. However, our method is based on B-trees
and space-filling curves and is not a main memory ap-
proach. In [LK01] a fast method for constructing the
Hilbert space-filling curve is presented as a tree struc-
ture, which we make use of in our work for calculating
the Hilbert space-filling curve.

[BKK99] proposes a layered approach similar to ours
based on the Z-Ordering where objects are only as-
signed one id. We differ from this approach by using
shifted layers, where we can guarantee that objects of
a given size always can fit on a certain layer. We also
differ by having user defined layers that can minimize
the number of layers. Therefore, fewer cells are needed
to be searched when querying.

In order to keep our performance study as realis-
tic as possible, we will make use of data generation
tools. Generation of moving object data is the focus
of [NPT03], which presents both the GSTD[TSN99]
and the Oporto[SM01] data generators; they both
support moving objects that have spatial extension.
[NPT03] also introduces some real data sets collected
from different natural phenomena like animals and
hurricanes[Wea05]. In spite of hurricanes actually do
have spatial extension, [Wea05] does only record them
as points.

2

3 Background

In this section we present the background for us-
ing space-filling curves and some problems with the
canonical use of space-filling curves indexing spatial
objects[BKK99]. Finally, an example is introduced
along with the query types which we will focus on.

3.1 Space-Filling Curves

When having a number of points in, e.g., a two-
dimensional space, if these are to be indexing using
a B+-tree a reduction of the number of dimensions
must be applied. This reduction can be achieved by
the use of space-filling curves. When the space is two-
dimensional, instead of having to save an object with
a coordinate pair, the location can be approximated in
a single number.

This requires the original space to be divided into
a number of cells, and each of these cells is given a
number according to the space-filling curve used. The
world is divided using a static grid that has the fol-
lowing properties: It ensures all cells are of equal size.
There is no overlap between cells, and the whole world
is guaranteed to be covered by the grid. Examples of
space-filling curves can be seen in Figure 1, inspired
by [Sam04].

0 1 14 15
3 2 13 12
4 7 8 11
5 6 9 10

(a) Hilbert

10 11 14 15
8 9 12 13
2 3 6 7
0 1 4 5

(b) Morton

0 1 2 3
7 6 5 4
8 9 10 11
15 14 13 12

(c) Row-prime

Figure 1: Examples of space-filling curves

A space-filling curve strives to preserve the cluster-
ing properties when mapping to zero dimensions. Ac-
cording to [MJFS01] the Hilbert space-filling curve has
good clustering properties.

When dealing with points only, the canonical ap-
proach is very useful. But when using space-filling
curves for objects with spatial extension several prob-
lems arise. Canonical use of space-filling curves is a
mapping of a point in a multi-dimensional space to a
single number. However, with spatial objects we want
to map two-dimensional objects in a two-dimensional
space into a single number.

An object with spatial extension might not be able
to fit into exactly one cell in the grid, e.g., in Figure
1. Therefore, a single object may be required to have
several different position ids, which causes more I/O
when modifying the objects[BKK99].

To avoid giving a single object several ids the cell-
size can be adjusted according to the largest object in
the population. Although the cell-size is larger than
any object, it cannot be guaranteed that an object
would not intersect cell-borders. Furthermore, when
dealing with objects that change size, it may not be
possible to predict their maximum size.

When an object is smaller than the cell-size, dead
space occurs. The term dead space describes how much
cell-space is not occupied by an object. When query-
ing objects execution time is affected by the cell-size,
because minimizing dead space reduces the number of
false positives. Dead space is a number between 0 and
1 where a lower number is better. The smaller the
number the more of the cell is occupied by the object.
The dead space is given from Equation 1. It shows that
the object-size is subtracted from the cell-size and then
divided by the cell-size.

deadspace =
cell-size− object-size

cell-size
(1)

Index selectivity is a number between 0 and 1. It
shows the average number of objects that must be ex-
amined when using only the index in a range query for
a single point. That is, how many objects cannot be
cut of solely based on the index. Equation 2 and 3
shows how index selectivity is calculated. In Equation
2 range� is defined as the range query that returns
both true and false positives from the cells intersected
by the range query. This can be visualized as a range
query, where all the objects have been extended to the
same size and shape of the cells in which they are con-
tained.

The variable c is the number of objects in the
database. wx and wy are the lengths of the sides of
the world. A simple example in one dimension can be
seen in Figure 2(a) where all the objects are extended
to fill all the cells they are in. The blue colour sym-
bolizes the object and the gray colour symbolizes the
dead space for the object.

The function that should be integrated is shown in
Figure 2(b) which is based on the placement of the
objects from Figure 2(a). Note that this function is
not differentiable, hence it cannot be integrated. It

3

can be implemented using Riemann sums[EP02].

rc =
∫ wy

0

∫ wx

0

count(range�(x, y, x, y))
c

dxdy (2)

index selectivity =
rc

wx · wy
(3)

10 0.25 0.50 0.75
(a) Expanded
objects

0 0.25 0.50 0.75 10
1/6
2/6
3/6
4/6

(b) Function to be inte-
grated

Figure 2: Example of index-selectivity

3.2 Query types

A range query[PSTW93] selects all objects within a
certain rectangular area. A query of this type could
be to ask “who are in a given city?”. k-NN is the k
nearest neighbours query[RKV95], which selects the k
nearest objects to a given point. An example of a k-NN
query could be when a customer requests a taxi, the
service employee would inquire “who is the nearest free
taxi to this customer?”. This example chooses the taxi
that has the shortest drive to the customer. Examples
of these query types can be seen in Figure 3.

(x,y)

(x,y)

(a) Range

(x
,
y)
k

(b) k-NN

Figure 3: Examples of Query Types

In Figure 3(b) the circle indicates the result set of
the k-NN query. That is the smallest circle with centre
(x, y) which encapsulates or intersects k objects.

3.3 Examples

Examples of moving objects which change size are
clouds, bacteria colonies, or shoals of fish. Although it

is not realistic to monitor, e.g., the position of shoals
using only GPS, Galileo, or RFID, these technologies
can be used with other kinds of sensor devices such
as sonar. Shoals is an example of objects that move
and also change their size and shape over time. When
objects are not guaranteed to have a certain shape, it
becomes harder to index them. The shape of a shoal
is of highly dynamic nature.

To cope with the relatively inconvenient shapes the
minimum bounding rectangle (MBR) is used. The
MBR of an object is used in the index structure, and
the actual shape of the object is saved, and is still
available for computations. Using the MBR makes it
possible to perform certain queries rapidly compared
to querying on the actual shapes. Filtering the data
for a query can be done rapidly using the MBR in-
stead of the actual shape. This approach is used in
R-trees[Gut84]. For example a range query can use
the MBR to get an approximation of which objects
are in a certain range. The query is then performed
again on these objects, but this time the calculations
are done on the actual shapes of the objects, and the
answer for the query is found.

4 Layered Space-Filling Curves

In order to overcome the problems with the canoni-
cal use of space-filling curves outlined in Section 3.1,
we first introduce layered space-filling curves that is
described in this section. Adding layers reduces the
amount of dead space, but the query overhead is in-
creased.

4.1 A Layered Approach

The method described in this article assigns only one
index number to each object. This approach makes
modifications faster.

Instead of looking at the world as only one plane
divided into cells, we look at the world as a set of
planes on top of each other. Each of these planes is
called a layer, which has the following properties:

• Layers are numbered bottom-up starting with 0.

• Space-filling numbers on one layer are always
larger than any number on any layer below.

• A layer always has more cells than any layer above
it.

4

• The top layer contains only a single cell.

• The smallest space-filling number is 0 and the
largest is the number of cells minus one

An example of this approach could be with the
divisions 2n so that the layers are divided into
[32, 16, 8, 4, 2, 1] fractions, which enables use of the
Hilbert space-filling curve on each layer. When an
object is inserted, it is pushed through the layers top-
down, like a sieve, until it cannot fit into a cell and then
it is stored on the layer above. When updating an ob-
ject, the same approach is used as with inserts, where
the object is pushed through the layers and then given
the space-filling number of the new cell. When delet-
ing, the object is simply removed from the database.

Every cell on a layer is given a number according
to a space-filling curve, e.g., the Hilbert space-filling
curve. The numbering starts at Layer 0 where it is
given numbers as the space-filling curve describes. At
Layer 1 the numbering follows as described in Layer
0 with the only difference that the numbering starts
where it ended at the layer below. The same procedure
follows with the rest of the layers.

Layer 3 14
Layer 2 12 13
Layer 1 8 9 10 11
Layer 0 0 1 2 3 4 5 6 7

Figure 4: The layered approach in one dimension using
divisions [8, 4, 2, 1]

Figure 4 is a conceptual view of the model in one
dimension where the cells are numbered sequentially.
Note that the figure is only shown in one dimension
for the sake of simplicity. The blue and orange boxes
symbolize objects and show on which layers they can
fit into a cell. When an object touches a line, it indi-
cates that this is where the object actually is stored.
The figure shows that the blue object can be pushed
the whole way down to Layer 0 and given the index
2. The orange cannot fit into the cell on Layer 1 as
it will touch a cell-border. Therefore, it is stopped at
Layer 2 and given the index 13. It is important that
the objects are pushed to as low a layer as possible in
order to increase selectivity and decrease dead space.

Therefore, it would have been better if the orange ob-
ject could have been pushed all the way down to Layer
0.

The method presented in this article is designed for
a two-dimensional space containing objects with spa-
tial extension. Figure 5 illustrates the method in two
dimensions using the Hilbert space-filling curve. The
arrow illustrates where the numbering ends at one layer
and where it begins at the next layer.

Figure 5: A layered Hilbert with divisions [4,2,1]

4.2 Layer Expansion

The Hilbert space-filling curve and other space-filling
curves require that the layer must be divided into 22n

cells[Sag94]. If there are not 2n divisions the layer must
be expanded in order to apply the space-filling curve.
We call the number of divisions of the current layer for
d, and we call the length of the sides of the world for
wx and wy. The length of the sides of the new layer is
denoted lx and ly

d′ = 2dlog2(d)e (4)

Now d′ is defined as the smallest 2n number larger
than or equal to d as shown in Equation 4. The layer
can be expanded with the missing cells by applying
Equation 5 on both wx and wy.

l = w +
w

d
· (d′ − d) (5)

Figure 6 outlines an example where d is 3 and shows
that the number of divisions is increased so d′ is 4.
Note that the dotted cells will never be used for index-
ing, but only for applying the space-filling curve.

When introducing a layer with divisions not equal to
2n it is not possible to use the top-down strategy de-
scribed in Section 4.1, where an object is pushed down
through the layers until it hits a cell-border. Therefore,

5

wx

w y

lx

l y

Figure 6: An example of how the layer is expanded

a bottom-up strategy is introduced where an object is
pushed from Layer 0 and upwards until it hits a layer
where the object fits into a cell. Figure 7 shows that
the object fits into Layer 0 and Layer 2. By using the
bottom-up strategy it will be stored on Layer 0 and
given the index 1. Note that Layer 0 originally had
three divisions, but as this is not a 2n number, the
layer is expanded into four divisions.

Layer 2
6

Layer 0 0 1 2 3

Layer 1
4 5

Figure 7: Indexing an object using the divisions [3, 2, 1]

4.3 Non-Overlapping Grids

Looking at Figure 4, e.g., if an object is positioned in
the centre it would have to be pushed all the way up to
Layer 3, giving poor selectivity. In order to overcome
this problem we use grids that do not overlap across
the different layers.

A strategy for selecting grids that do not overlap is
to select a set of divisions D that are relative prime as
shown in Equation 6.

∀d, e ∈ D : d 6= e ⇒ gcd(d, e) = 1 (6)

When using non-overlapping grids it is more likely
that objects will stay on the lower layers instead of
being pushed all the way to the top layers. This is be-
cause that if an object by chance touches a cell-border
on one layer, this line will not be in the same location
on any other layer, and thereby it is more likely to find
a cell on the bottom layers where the object fits.

Theorem 1 shows that if the set of divisions are rela-
tive prime then no grid on any layer will overlap. The

variables x and y are positive integers, that symbolizes
places where divisions are possible.

Theorem 1

∀x, y, d, e ∈ N : gcd(d, e) = 1 ∧ x < d ∧ y < e

⇒ x

d
6= y

e

Proof: There are three different cases, d = e, d < e,
and d > e. If d = e, from gcd i(d, e) = 1 we know
that d = e = 1 and there is no x < d = 1, hence the
precondition is always false.

Now for the two latter cases. In the following it is
assumed, without loss of generality, that d < e. Now
again there are three cases, x = y, x > y, and x < y.

• If x = y and d < e meaning d 6= e we have that
x
d 6=

x
e .

• If x > y and d < e we have that x
d > y

e , since
something large, x, divided by something small, d,
is always larger than something small, y, divided
by something large, e.

• Now the last case x < y. x
d 6=

y
e ⇔ x · e 6= y · d. If

we try to prove that x · e = y ·d, it must hold that
(x · e)|(y · d). We know that if gcd(p, q) = 1 ⇒
lcmii(p, q) = p · q. The smallest y′ ∈ N, which can
be multiplied with d such that (x · e)|(y′ · d), is
y′ = e, but y < e and hence it is not possible to
find such a y and the inequality is fulfilled.

�

5 Shifted Layers

We will now introduce the notion of shifted layers,
which is particularly useful when a lot of objects are
roughly the same size. To ensure fast queries by keep-
ing good selectivity the number of layers is reduced.
This is done to reduce the number of layers, while keep-
ing good selectivity to ensure faster queries.

Until now it has been required to have a top layer
containing only one cell containing the whole world.
This was done in order to ensure that there is a layer
where all objects fit regardless of size. Shifted layers
are also useful when knowing the maximum size of the
objects being indexed.

iGreastest Common Divisor
iiLeast Common Multiple

6

5.1 Shifting a Layer

When knowing the maximum size of objects, the tra-
ditional one-cell top layer can be replaced by a shifted
layer reducing the dead space for the objects and in-
creasing selectivity. A shifted layer is a layer that guar-
antees that any object of a given maximum size can al-
ways fit on this layer. In order to find the divisions for
this layer Equation 7 must be applied, where wx and
wy are the sizes of the world and ox is the length of the
longest object on the x-axis and oy on the y-axis. The
dx and dy are the numbers of divisions that should be
on the x- and the y-axis respectively if the object was
three times bigger. The reason for choosing three is
that it is the smallest number of times a layer must
be shifted to be able to contain an object of a certain
size. Finally, the divisions for the layer is calculated
which is the minimum of the two dx and dy floored.
Note that floor is the largest integer smaller than the
input and therefore we use ceil minus one.

dx =
wx

3 · ox
dy =

wy

3 · oy
d = dmin(dx, dy)− 1e (7)

When shifting, the layer is copied twice so we have
three identical instances of the layer, these are called
sub-layers. Now the second and the third sub-layers
are moved respectively wx

3d and 2wx

3d to left, they are
also moved respectively wy

3d and 2wy

3d down in the two-
dimensional case. Figure 8 shows an example in one
dimension of a shifted layer with three divisions.

Layer n

Layer n

Layer n

Figure 8: Shifted layers in one dimension where d = 3

Any layer in the method described in Section 4 can
be replaced by a shifted layer. Often it is the top layer
that is replaced by a shifted layer, as the selectivity is
very poor in this layer. However, if the majority of the
objects are of similar size, a shifted layer fitting this
size could be beneficial.

5.2 Applying Space-Filling Curves

Now we need to apply the space-filling curve to the
layer. Any non-shifted layer below the shifted layer is

numbered as described in Section 4.1. The numbering
at the shifted layer starts, as with any other layer, with
the largest number below plus one. The next layer
above, regardless whether it is shifted or not, will also
start with the largest number at this layer plus one.

A shifted layer consists of three identical copies of
the layer and therefore the three sub-layers have ex-
actly the same number of cells. The numbering of
the original layer is the space-filling numbering with
the only difference that it is multiplied by three. The
second sub-layer is given the space-filling numbering
multiplied by three and then one is added. The last
sub-layer uses the same approach only two is added in-
stead of one. This is illustrated in the one-dimensional
example in Figure 9, where the subscript 3 symbolizes
a shifted layer.

Layer 2 16
Layer 12 6 9 12 15
Layer 11 5 8 11 14

Layer 0 0 1 2 3

Layer 10 4 7 10 13

Figure 9: One-dimensional example with divisions
[4, 33, 1]

Figure 10 shows an example of a shifted layer with
three divisions, numbered according to the Hilbert
space-filling curve. The black sub-layer is the original
layer, where the Hilbert index is multiplied by three.
The red grid is the second sub-layer with the Hilbert
curve multiplied by three and one is added. Last is
the green grid where the Hilbert curve is multiplied by
three and two is added. The bottom layer illustrates
an expansion of the world as shown in Figure 6.

0 3 42 45
9 6 39 36
12 21 24 33

15 18 27 30
1 4 43 46
10 7 40 37

13 22 25 34
16 19 28 31

2 5 44 47
11 8 41 38

14 23 26 35
17 20 29 32

Layer n

Layer n

Layer n

Figure 10: Two-dimensional shifted layer with Hilbert
space-filling curves where d = 3

7

5.3 Insert Object

When an object is indexed using a shifted layer a
slightly different approach, as the one described in Sec-
tion 4.1, is used for placing the object. Firstly the
object is put in the first sub-layer that is the black
sub-layer on Figure 10. If it fits within one cell it is
given the space-filling number of this cell. If the object
does not fit into a cell in the first sub-layer, the object
is ”moved” wx

3d to the right and wy

3d up. The object is
not actually moved, it is just in order to visualize the
concept. Now if the object fits into a cell in the first
sub-layer it is assigned this space-filling number plus
one. This is equivalent to an object fitting into the red
sub-layer on Figure 10. If the object does not fit into
the second sub-layer either, then it is ”moved” again
wx

3d to the right and wy

3d up, and if it fits into a cell on
the first sub-layer it is assigned this space-filling num-
ber plus two. This is equivalent to an object fitting
into the green sub-layer on Figure 10.

When the divisions, for the shifted layer, are chosen
from the maximum size of the objects, it is unavoid-
able that the dead space for a cell is at least 8

9 as the
object only occupies 1

3 of the cell on each axis in two-
dimensional case.

1 function getIndex(ox1 ,oy1 ,ox2 ,oy2 ,D)
2 foreach(d ∈ D)
3 if (isShifted(d)) S←[0, 1

3 , 2
3]

4 else S←[0]
5 foreach(s ∈ S)

6 o′x1
←b d·ox1

wx
+ sc, o′y1

←b d·oy1
wy

+ sc

7 o′x2
←b d·ox2

wx
+ sc, o′y2

←b d·oy2
wy

+ sc
8 if (o′x1

= o′x2
∧ o′y1

= o′y2
)

9 return hilbert(o′x1
, o′y1

, d, D, s)

10 return −1 //error

Listing 1: Calculating index number for an object

Listing 1 shows the algorithm for calculating the
index number for an object. The function takes in
(Line 1) the coordinates for the lower left corner of the
MBR (ox1 , oy1), and the upper right corner of the MBR
(ox2 , oy2) and D which is the set of divisions. Line 2–
9 iterates through all the layers. Lines 3–4 examines
whether the layer is a shifted or not. If the layer is
shifted Line 5–9 iterates through the three sub-layers.
Lines 6–7 creates an integer coordinate-set that repre-
sents which cell the corners are in. The variable s is
added in order to move the object, in order to fit into
the shifted layers. Line 8 examines whether the whole
MBR is inside a cell and if it is then the id of the cell
is returned on Line 9.

6 Spatial Queries

In this section we will present algorithms for the range
and k-NN queries. The algorithms builds up the WHERE
clause that can be executed on an existing DBMS.

6.1 Range Queries

The range query returns objects that are within a spec-
ified range. Listing 2 shows the algorithm for the range

1 function range(qx1 , qy1 , qx2 , qy2 , D)
2 foreach(d ∈ D)
3 if (isShifted(d)) S←[0, 1

3 , 2
3]

4 else S←[0]
5 foreach(s ∈ S)

6 q′x1
←b d·qx1

wx
+ sc, q′y1

←b d·qy1
wy

+ sc

7 q′x2
←b d·qx2

wx
+ sc, q′y2

←b d·qy2
wy

+ sc
8 for(qx←q′x1

;qx ≤ q′x2
;qx←qx + 1)

9 for(qy←q′y1
;qy ≤ q′y2

;qy←qy + 1)

10 h←hilbert(qx, qy, d, D, s)
11 if (qx = q′x1

∨ qx = q′x2
∨ qy = q′y1

∨ qy = q′y2
)

12 r←r ∪ {h} //partially included
13 else
14 R←R ∪ {h} //fully included
15 foreach(o ∈ R)
16 wR←wR ∪ {"index=o"}
17 w′

R←implode(wR," OR ")
18 foreach(o ∈ r)
19 wr←wr ∪ {"index=o"}
20 w′

r←implode(wr," OR ")
21 t←"(w′

R) OR ((w′
r) AND intersects(box(qx1,qy1,qx2,qy2

)))"
22 return t

Listing 2: The algorithm for range queries

query. The function takes in (Line 1) the coordinates
for the lower left corner of the range (qx1 , qy1) and the
upper right corner of the range (qx2 , qy2) and D which
is the set of divisions. Line 2–14 iterates through all
the layers. Lines 3–4 examines whether the layer is
shifted or not. If the layer is shifted Line 5–14 iter-
ates through the three sub-layers. Lines 6–7 creates
an integer coordinate-set that represents which cells
the corners are in. The variable s is added in order
to move the object according to the shifted layer as
described in Section 5.3.

Lines 8–14 iterates through all the cells that the
range covers. For each cell that is iterated by Lines
8–14, Line 10 finds the Hilbert number. Lines 11–
14 examines the cells that are covered by the range,
that is, whether a cell is completely inside the speci-
fied range. If it is, the space-filling number is added to
the sets R otherwise it is added to the set r.

8

Lines 15–21 creates the actual SQL statement that
specifies the range query. Lines 15–20 includes the ids
that are covered by the range and adds them to wr

and wR respectively and OR them together. This is
done by the implode function on Line 17 and Line 20
which takes in a set and returns a string with all of
the elements separated by the second argument. Line
21 creates the WHERE clause that examines whether or
not the objects in the cells from r are actually within
the range. Finally, the SQL statement is returned on
Line 22. In a practical implementation, this can be
an extremely long SQL statement. Therefore we use
the BETWEEN operator when possible. This approach
requires that the sets r and R are sorted.

6.2 k-NN Queries

The k-NN query returns the k nearest objects to a
given point.

1 function k−NN(k, qx, qy, D)

2 l←
q

(wx·wy)· k
n

2
3 a←k
4 do

5 l←l · c ·
q

k
a

6 a←count(range(qx − l, qy − l, qx + l, qy + l, D))
7 if (a = 0) a←0.5
8 while(a < k)
9 t←range(qx − l, qy − l, qx + l, qy + l, D)

10 t′←sort(t,distance(qx, qy))
11 o←number(t′, k)
12 l′←distance(o, (qx, qy))
13 if (l′ ≤ l) r←t
14 else r←range(qx − l′, qx − l′, qx + l′, qy + l′)
15 return r + " ORDER BY DISTANCE TO (qx,qy) LIMIT k"

Listing 3: The algorithm for k-NN queries

Listing 3 shows the algorithm for the k-NN query.
The function takes in (Line 1) the number of desired
objects, the coordinate-set of the point (qx, qy) and D
which is the set of divisions. Line 2 creates a vari-
able l which is an indication of statistically how large
a portion of the world is needed to get k objects when a
uniform distribution of objects in the world is assumed.
n is the total number of objects in the database. The
variable a from Line 3 indicates how many objects that
are currently found, initially it is set to k. Lines 4–8 is
a loop that makes a range query and keeps expanding
it until it has found k objects. In Line 5 the variable
l is increased slightly by using c which is a constant
used for increasing the probability for getting a cor-
rect result in each iteration. We use a c value of 1.05,

which is a expansion of 5%. Furthermore, l is increased
with the square root of k

a , that is a calculation of how
much the range needs to be increased statistically to
find k objects. In a non-uniformly distributed world,
the algorithm will adjust itself to how much it should
expand in the next iteration, according to the number
of objects currently found. Line 6 counts how many
objects there are in the specified range. Line 7 exam-
ines whether a is zero and in that case it is set to 0.5
in order to prevent division by zero on line 5.

Line 9 executes the range query with the coordinates
calculated in Lines 4–8. On Line 10 the result is sorted
according to the distance to the query-point. Then the
k’th element is selected on Line 11, and the distance
to this object is calculated on Line 12. At Line 13
it is examined whether the whole result-set is in the
already executed range, and if it is then the old result-
set is used, else a new range query is done on Line 14.
The result-set may be too large, but it is guaranteed
to include at least the closest k objects. On Line 15
the result is sorted by distance and only the k closest
objects are selected. The DISTANCE TO function can
be implemented by the user as they see fit.

7 Performance Study

This section will examine how the methods perform
with regard to inserts, updates, and deletes. Further-
more, tests are carried out using the spatial queries
from Section 6.

7.1 Test Setup

The tests were performed on a 1.8 GHz Intel Pentium
4 processor with 1 GB RAM. The operating system
was Microsoft Windows Server 2003 Enterprise Edition
with Servicepack 1 running the MySQL 5.0.15 DBMS.
MySQL implements spatial extensions according to
the specifications of the Open GIS Consortium[Con05].
In MySQL spatial indexing is implemented using R+-
trees[MyS06]. MySQL formed the basis for comparing
the indexing approaches designed in this article. In
this section we will use different data sets, for carrying
out the different tests. They are generated using the
Oporto data generator[SM01].

We also compare our method to the canonical ap-
proach from Section 3.1, where the world is a single
plane divided into cells, and if objects overlap cell-
borders, the object is stored more times with the re-

9

spective space-filling numbers. Finally, tests are car-
ried out where no index on the objects is maintained.
The last test is useful for calculating the time used
for I/O, in order to find the actual overhead of using
a given index structure which is given by Equation 8.
This equation shows the overhead of using an index for
modifications.

cost =
with index− no index

no index
(8)

In a relational database there are two obvious ways
of implementing the canonical Hilbert. The first solu-
tion is to have a single table containing all data, and if
an object must be partitioned it is saved more times in
the table[ARR+97]. The other solution is to have two
tables where data is put in one and the Hilbert index
is put in the other. Our tests have shown that the first
implementation performs the best and therefore will
form the basis for the comparison.

The table schema consists for all the tables of an
attribute containing the id, the polygon, and a tuple
containing 200 bytes of data in order to make the tests
more realistic. Furthermore, an attribute for the space-
filling index is used when testing the Hilbert space-
filling curve.

We only show results for single-threaded tests as
MySQL only supports table-level locking for tables
containing spatial objects[MyS06] hence the results
should be equal. This is also supported by tests.

In the tests in this section we use a world area of
50, 000×50, 000 and the size of the objects has a normal
distribution with a mean µ = 125, 000 and a standard
derivation σ = 20, 000. This means that 1,000 ob-
jects together on average occupy 5% of the world. All
objects are squares and their positions are uniformly
distributed.

All tests are performed five times where the best and
the worst are discarded and the average of the three
remaining is calculated.

7.2 Finding Divisions

In order to use the method described in this article
a set of divisions must be selected. First of all the 2n

divisions from Section 4.1 are tested using the divisions
[32, 16, 8, 4, 2, 1]; this is data set 1. These numbers are
chosen as the divisions are doubled at each layer. We
use a data set with the divisions [31, 17, 8, 5, 3, 1], which
are all relative primes. These numbers are chosen as

the divisions are close to data set 1 ; this we will call
data set 2.

Another data set has the divisions [503, 413, 1]; this
we will call data set 3. These numbers are chosen based
on Equation 7, which is calculated on the smallest 50%
of the objects and the smallest 96%. The numbers are
slightly adjusted to ensure they are relatively primes.
This is illustrated in Figure 11.

0.00

0.05

0.10

0.15

0.20

9 6
50% 96%

L a y
e r 0

L a y
e r 1

Figure 11: Choosing divisions for data set 3

When comparing to the canonical Hilbert space-
filling curve we use 8 divisions; this is data set 4.

The previous data sets have the following data distri-
bution over the layers. The tests were conducted with
50,000 objects in the database. Data set 1 has the dis-
tribution [61%, 19%, 10%, 6%, 3%, 1%] where the first
number is the bottom layer. Data set 2 has the distri-
bution [62%, 30%, 7%, 0%, 0%, 0%] and data set 3 has
the distribution [96%, 4%, 0%]. Even though there is
no objects on the top layer, it is not guaranteed that
there never will be any.

Dead space Selectivity
Data set 1 96.6% 2.780%
Data set 2 96.5% 0.292%
Data set 3 87.6% 0.038%
Data set 4 99.7% 1.722%

Figure 12: Dead space and index selectivity

Figure 12 shows the dead space and index selectivity
as described in Section 3.1. As data set 3 has the best
distribution with most objects on the bottom layer and
furthermore it has the best dead space and index se-
lectivity. This will form the basis for the comparison
throughout the rest of this section. As it appears from
Figure 12, data set 3 has 87.6% dead space which is less
than the theoretical upper bound described in Section
5.3. This is because the objects can fill the whole cell

10

as the divisions are not calculated based on maximum
size.

7.3 Modification

In the following we will test how inserts, updates,
deletes, and a mix of the three performs.

7.3.1 Insert

The insert test is conducted on an empty database.
The data set consists of 1,000,000 objects, which are
all inserted individually. At every 50,000 inserts 2,000
inserts are timed and the average time is plotted on
the chart.

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012

5 0 ,
0 0 0

2 0 0
, 0 0
0
3 5 0

, 0 0
0
5 0 0

, 0 0
0
6 5 0

, 0 0
0
8 0 0

, 0 0
0
9 5 0

, 0 0
0

Canonical HilbertNo index
R+Layered Hilbert

seconds

objects

Figure 13: 1,000,000 inserts

In Figure 13, looking at the average times of the
layered Hilbert, the R+-tree, and without index, and
applying Equation 8 we see that the overhead with the
R+-tree is 116% larger than the layered Hilbert.

7.3.2 Update

The update test is conducted on an empty database.
50,000 inserts are conducted and the 2,000 updates are
performed and this is repeated. The testing is done by
timing the 2,000 updates and calculating the average.
The update test is done up till 1,000,000 objects.

In Figure 14, looking at the average times of the
layered Hilbert, the R+-tree, and without index, and
applying Equation 8 we see that the overhead with the
R+-tree is 94% larger than the layered Hilbert.

seconds

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018

5 0 ,
0 0 0

2 0 0
, 0 0
0
3 5 0

, 0 0
0
5 0 0

, 0 0
0
6 5 0

, 0 0
0
8 0 0

, 0 0
0
9 5 0

, 0 0
0

Canonical HilbertNo IndexR+Layered Hilbert
objects

Figure 14: 1,000,000 updates

7.3.3 Delete

The delete test is conducted on a database with
1,000,000 preloaded objects. Every object is deleted
individually and the same timing mechanism as with
the update test is used. The x-axis shows how many
objects there are in the database when the delete is
conducted.

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010

5 0 ,
0 0 0

2 0 0
, 0 0
0
3 5 0

, 0 0
0
5 0 0

, 0 0
0
6 5 0

, 0 0
0
8 0 0

, 0 0
0
9 5 0

, 0 0
0

Canonical Hilbert
No IndexR+Layered Hilbert

seconds

objects

Figure 15: 1,000,000 deletes

As is appears from Figure 15, there is no signifi-
cant difference between the tested methods except for
the canonical Hilbert, as it has to delete more rows.
Against intuition, the R+-tree is very fast at deleting
and rebalancing the index.

7.3.4 Mixed Modification

In order to test how the different indexes perform when
altering the trees heavily, a workload is generated do-
ing a mix of inserts, updates, and deletes. The work-

11

load consist of a set of preloaded object, and then
modifications are done at the ratio 10-80-10 and 30-
40-30 of inserts, updates, and deletes. 500,000 objects
are preloaded. On the preloaded data we will perform
1,000,000 operations, which are timed. There is per-
formed one transaction per operation.

seconds

0
200
400
600
800

1,000
1,200
1,400
1,600

10% Inserts
80% Updates
10% Deletes

30% Inserts
40% Updates
30% Deletes

Canonical HilbertNo indexR+Layered Hilbert

Figure 16: Mixed modifications

Figure 16 shows the mixed test performed with
500,000 preloaded objects. As it appears from the fig-
ure, the best performance is achieved with no index
on the objects, because it does not need to maintain
an additional index. With the ratio 10-80-10 we see
that the overhead with the R+-tree is 98% larger than
the layered Hilbert. With the ratio 30-40-30 the over-
head with the R+-tree is 106% larger than the layered
Hilbert. This is due to the higher number of inserts
where the B+tree has a larger advantage than on up-
dates. Tests have shown that the ratio between the
different methods are the same with 150,000 preloaded
objects.

7.4 Querying

The method described in this article is designed for
fast modification speeds. We will now test how much
performance loss at query time the method has, com-
pared to the R+-Tree. The database is preloaded with
500,000 objects.

7.4.1 Range Query

Testing the range query, 100 range queries are per-
formed and the average is calculated and plotted on
the chart. We will change the percentage of the world,
which is selected in the range.

seconds

0
2
4
6

8
10
12

0 . 0 2 . 5 5 . 0 7 . 5 1 0
. 0

1 2
. 5

1 5
. 0

1 7
. 5

2 0
. 0

Canonical HilbertNo IndexR+Layered Hilbert

per cent

Figure 17: Range query

seconds

0.0

0.5

1.0

1.5

2.0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

Canonical HilbertR+Layered Hilbert

per cent

Figure 18: Magnification of Figure 17 from 0–3%

As it appears from Figure 17, the range query in the
layered Hilbert is slower than the R+-tree. It shows
that when a range is larger than 10% of the world, se-
quential scan is faster than the layered Hilbert. There-
fore, sequential scan should be used when using layered
Hilbert when querying more then 10% of the world.
The reason why the canonical Hilbert performs worse
than our method could be that the DISTINCT keyword
must be applied as the table contains duplicates which
must be filtered out.

The tests show that layered Hilbert is 52% slower
than the R+-Tree when degenerated to sequential scan
after 10%.

7.4.2 k-NN Query

Testing the k-NN query, 100 random query points are
selected. These will be used for all the tests. We will
change the number of objects we want to be returned,
to see how it scales. However, MySQL does not im-
plement the distance function and therefore it is not

12

possible to do the k-NN query directly. Therefore, we
have implemented a distance function in MySQL that
we will use on all the tests. The implemented distance
function that is listed in Appendix A.

k
0.00
0.05
0.10
0.15
0.20
0.25
0.30

5 2 0 3 5 5 0 6 5 8 0 9 5

R+
Layered Hilbert

seconds

Figure 19: k-NN queries

As it appears from Figure 19 the performance of the
layered Hilbert and the R+-tree are about the same,
which is a result of equal implementations. The reason
why, against intuition, the two perform equally could
be that the overhead of by using the distance-function
is too large.

7.5 Summary

In a scenario with 2 % range queries and modifications
in the ratio 10-80-10 inserts, updates, and deletes the
worsened query speed is more than justified when hav-
ing a modification/query ratio of 500 to 1.

8 Conclusion

In this article we have proposed a layered approach for
indexing moving objects with spatial extension. We
introduced the notion of shifted layers which proved
to be very efficient for achieving better selectivity and
reducing dead space.

We showed that the overhead for maintaining the in-
dex is significantly smaller than on the R+-tree and the
canonical way of using the Hilbert space-filling curve.

This modification speedup comes at the expense of
a slightly lowered query speed. The number of mod-
ifications are often several orders of magnitude larger
than the number of queries. Therefore, this sacrifice
may be justified.

In this article, MySQL was chosen as DBMS as it
is easy to install and use. However, the support for
spatial objects is still very new. Some features are
still missing, such as the k-NN query. Therefore, an
interesting topic for further testing is to evaluate the
implementation on a DBMS with full spatial support.

It would be interesting to look into how the method
performs on skewed data. We have not been able to
find a data generation tool, which fulfils our needs with
respect to, e.g., skewedness, amounts and spatial ex-
tension.

Throughout this article user specified constants,
world size and divisions, have been used. It would be
interesting to make the method more dynamic in order
to ensure the method itself can maintain and modify
these constants.

Finally, future work includes generalizing the
method to work in more dimensions.

Acknowledgements

The authors would like to thank José Moreira et al for
providing us with the Oporto[SM01] source code. We
would also like to thank Mario Nascimento for his help
during data generation. Finally, we thank Kristian
Torp for guidance and help throughout the project pe-
riod. Without his feedback this article could not have
been realized.

References

[ARR+97] T. Asano, D. Ranjan, T. Roos, E. Welzl,
and P. Widmayer. Space-filling curves and
their use in the design of geometric data
structures. Theor. Comput. Sci., 181(1):3–
15, 1997.

[BKK99] C. Böhm, G. Klump, and H. Kriegel. Xz-
ordering: A space-filling curve for objects
with spatial extension. Symposium on
Large Spatial Databases, (6), 1999.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider,
and B. Seeger. The r*-tree: an efficient and
robust access method for points and rectan-
gles. In ACM SIGMOD International Con-
ference on Management of Data, 1990.

13

[Con05] Open GIS Consortium. Open gis consor-
tium. http://www.opengis.org, November
2005.

[EP02] C. H. Edwards and D. E. Penny. Calculus,
volume 6. Pintice Hall, 2002. ISBN 0-13-
095006-8.

[FR89] C. Faloutsos and S. Roseman. Fractals for
secondary key retrieval. In Symposium on
Principles of Database Systems, number 8,
1989.

[Gut84] A. Guttman. R-trees: a dynamic in-
dex structure for spatial searching. In
ACM SIGMOD International Conference
on Management of Data, 1984.

[Inc03] Allied Business Intelligence
Inc. Rfid white paper.
http://www.dri.co.jp/free/abi rfid02wp.pdf,
2003.

[KBPR00] K. Kalpakis, J. Behnke, M. Pasad, and
M. Riggs. Performance of spatial queries
in object-relational database systems. Jan-
uary 2000.

[LK01] J. K. Lawder and P. J. H. King. Query-
ing multi-dimensional data indexed using
the hilbert space-filling curve. SIGMOD
Record, 30(1), March 2001.

[MJFS01] B. Moon, H. V. Jagadish, C. Faloutsos,
and J. H. Saltz. Analysis of the cluster-
ing properties of the hilbert space-filling
curve. IEEE Transactions On Knowledge
And Data Engineering, 13(1), 2001.

[MyS06] MySQL. Mysql 5.0 reference manual.
http://dev.mysql.com/doc/refman/5.0/en/,
January 2006.

[NPT03] M. A. Nascimento, D. Pfoser, and
Y. Theodoridis. Synthetic and real spa-
tiotemporal datasets. IEEE Data Eng.
Bull., 26(2):26–32, 2003.

[OT02] B. C. Ooi and K. Tan. B-trees: bearing
fruits of all kinds. In Australasian Confer-
ence on Database Technologies, number 13,
2002.

[PSTW93] B. Pagel, H. Six, H. Toben, and P. Wid-
mayer. Towards an analysis of range query
performance in spatial data structures. In
Symposium on Principles of database sys-
tems, number 12, 1993.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent.
Nearest neighbor queries. In International
conference on Management of data, 1995.

[Sag94] H. Sagan. Space-Filling Curves. Springer-
Verlag, 1994. ISBN 0-387-94265-3.

[Sam04] H. Samet. Object-based and image-based
object representations. ACM Comput.
Surv., 36(2), 2004.

[SJLL00] S. Saltenis, C. S. Jensen, S. T. Leutenegger,
and M. A. Lopez. Indexing the positions of
continuously moving objects. In SIGMOD
Conference, pages 331–342, 2000.

[SM01] J. Saglio and J. Moreira. Oporto: A realis-
tic scenario for moving objects. GeoInfor-
matica, 5(1), March 2001.

[SRF87] T. Sellis, N. Roussopoulos, and C. Falout-
sos. The r+-tree: A dynamic index for
multi-dimensional objects. Very Large
Data Bases, (13), 1987.

[Tra05] European Commission’s Transport. Galileo
european satellite navigation system.
http://europa.eu.int/comm/dgs/energy
transport/galileo/index en.htm, 2005.

[TSN99] Y. Theodoridis, J. R. O. Silva., and M. A.
Nascimento. On the generation of spa-
tiotemporal datasets. Intl. Symposium on
Spatial Databases, 6, July 1999.

[Wea05] Unisys Weather. Atlantic hurricane data.
http://weather.unisys.com/hurricane/
index.html, 2005.

[YPK05] X. Yu, K. Q. Pu, and N. Koudas. Moni-
toring k-nearest neighbor queries over mov-
ing objects. In International Conference on
Data Engineering, number 21, 2005.

14

A Distance in MySQL

In Listing 4 the algorithm for calculating the distance
from a point to a polygon is outlined.

1 function OurDistance(p, geo)
2 if (IsWithin(p, geo) return 0
3 d←∞
4 foreach(l ∈ geo)
5 d′←DistanceToLineSegment(p, l)
6 if (d′ ≤ d) d←d′

7 return d

Listing 4: The distance function in pseudo-code

On Line 1 in Listing 4 the input is defined such that
it takes in a point, p, and a polygon, geo, which is an
ordered set of lines. On Line 2 it is tested whether p
is within geo and if so, 0 is returned. d is the distance
from p to geo. d is initialized to ∞ on Line 3. Lines
4–6 loops over every lines, l in geo. The distance from
p to l is calculated on Line 5 and if this distance is
shorter than the current partial result d. The distance
is saved in d on Line 6. The implementation for the
OurDistance and DistanceToLineSegment can be seen
in Listing 5.

1 DELIMITER ’//’;
2 −− inspired by http://www.vb−helper.com/

howto distance point to line.html
3 DROP FUNCTION IF EXISTS DistanceToLineSegment//
4 CREATE FUNCTION DistanceToLineSegment(px DOUBLE, py

DOUBLE, x1 DOUBLE, y1 DOUBLE, x2 DOUBLE, y2

DOUBLE) RETURNS DOUBLE

5 BEGIN

6 DECLARE dx DOUBLE; DECLARE dy DOUBLE;
DECLARE t DOUBLE;

7 DECLARE nearx DOUBLE; DECLARE neary DOUBLE

;
8
9 SET dx = x2 − x1;

10 SET dy = y2 − y1;
11 IF(dx=0 AND dy=0) THEN
12 −− It’s a point not a line segment
13 SET dx = px − x1;
14 SET dy = py − y1;
15 SET nearx = x1;
16 SET neary = y1;
17 RETURN SQRT(dx ∗ dx + dy ∗ dy);
18 END IF;
19
20 SET t = ((px − x1) ∗ dx + (py − y1) ∗ dy) / (dx ∗ dx +

dy ∗ dy);
21
22 IF (t < 0) THEN
23 SET dx = px − x1;
24 SET dy = py − y1;
25 SET nearx = x1;
26 SET neary = y1;
27 ELSEIF (t > 1) THEN
28 SET dx = px − x2;
29 SET dy = py − y2;
30 SET nearx = x2;
31 SET neary = y2;
32 ELSE
33 SET nearx = x1 + t ∗ dx;
34 SET neary = y1 + t ∗ dy;
35 SET dx = px − nearx;
36 SET dy = py − neary;
37 END IF;
38
39 RETURN SQRT(dx ∗ dx + dy ∗ dy);

40 END//
41
42
43 DROP FUNCTION IF EXISTS OurDistance//
44 CREATE FUNCTION OurDistance (px DOUBLE, py DOUBLE,

geo POLYGON) RETURNS TEXT

45 BEGIN

46 DECLARE geostring TEXT;
47 DECLARE pairstring TEXT;
48 DECLARE distance DOUBLE;
49 DECLARE testdistance DOUBLE;
50 DECLARE x1 DOUBLE; DECLARE y1 DOUBLE;

DECLARE x2 DOUBLE; DECLARE y2 DOUBLE

;
51 DECLARE commapos INT;
52 DECLARE spacepos INT;
53
54 IF(WITHIN(GEOMFROMTEXT(CONCAT(’POLYGON((’,

px, ’ ’, py, ’))’)),geo)) THEN
55 RETURN 0;
56 END IF;
57
58 SET geostring = ASTEXT(geo);
59 SET geostring = SUBSTRING(geostring, LENGTH(’

POLYGON((’)+1, LENGTH(geostring) − (LENGTH(’
POLYGON((’) + LENGTH(’((’)));

60
61 SET commapos = LOCATE(’,’, geostring);
62 SET pairstring = LEFT(geostring, commapos−1);
63 SET geostring = SUBSTRING(geostring, commapos+1,

LENGTH(geostring)−commapos);
64 SET spacepos = LOCATE(’ ’, pairstring);
65 SET x1 = LEFT(pairstring, spacepos − 1);
66 SET y1 = SUBSTRING(pairstring, spacepos, LENGTH(

pairstring)−(spacepos−1));
67
68 SET distance = DistanceToLineSegment(px, py, x1, y1,

x1, y1); −− default to something that is true
69
70 WHILE (INSTR(geostring, " ")) DO

71 SET commapos = LOCATE(’,’, geostring);
72 SET pairstring = LEFT(geostring, commapos−1);
73 IF(commapos<1) THEN
74 SET pairstring=geostring;
75 SET geostring = "";
76 ELSE
77 SET geostring = SUBSTRING(geostring,

commapos+1, LENGTH(geostring)
−commapos);

78 END IF;
79 SET spacepos = LOCATE(’ ’, pairstring);
80 SET x2 = LEFT(pairstring, spacepos − 1);
81 SET y2 = SUBSTRING(pairstring, spacepos,

LENGTH(pairstring)−(spacepos−1));
82 SET testdistance = DistanceToLineSegment(px,

py, x1, y1, x2, y2);
83
84 IF(testdistance < distance) THEN
85 SET distance = testdistance;
86 END IF;
87 SET x1 = x2;
88 SET y1 = y2;
89 END WHILE;
90
91 RETURN distance;
92 END//
93 DELIMITER ’;’//

Listing 5: The OurDistance and DistanceToLine-
Segment functions in SQL

15

