
Robocode
Development of a Robocode team.

E1-209

Jens Frøkjær Palle B. Hansen
Martin L. Kristiansen Ivan V. S. Larsen
Dan Malthesen Tom Oddershede
René Suurland

December 2004

The University of Aalborg
Department of Computer Science





Aalborg Universitet
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:

Robocode – Development of a
Robocode team

Project period:
Dat3, Sep. 2th - Dec 17th, 2004

Project group:
E1-209

Group members:
Jens Frøkjær
Palle B. Hansen
Martin L. Kristiansen
Ivan V. S. Larsen
Dan Malthesen
Tom Oddershede
René Suurland

Supervisor:
Jens Dalgaard Nielsen

Copies: 9

Report page count: 112

Abstract:

This report describes the steps taken
to develop a Robocode team which
uses bayesian network, genetic algo-
rithm and neural network for evolving
in Robocode.
The main goal of the project is to pro-
duce a working Robocode team. The
“Decision support systems and ma-
chine learning” course is used for this
project.
The report comprises three main parts:
I) Analysis, II) Design, III) Implemen-
tation, Test, and Conclusion.
The analysis describes different tech-
nologies needed for building a robot
and an analysis of the Robocode en-
vironment.
The Design specifies a general frame-
work of the implementation as well
as the design of the different machine
learning systems.
The last part consists of the three chap-
ters: Implementation, Test, and Con-
clusion. The Implementation chap-
ter describes the important parts of
the implementation process. The Test
chapter outlines the test of the machine
learning in order to see if it actually
learns anything.





Preface
This report is the result of a DAT3 semester at the university of Aalborg.
The project uses the course “Decision support systems and machine learn-
ing” as PE-course. This project is study-oriented with no commercial or
economic interests involved, thus the main object of the project is to develop
a functional program.

Reference resources are marked with [number ]. The corresponding num-
ber can be found in the Bibliography in the back of the report.

The web-site “www.cs.aau.dk/∼fr0/” contains: Source code, JavaDoc, a
copy of the report, and a copy of the compiled robots.

We would like to thank our supervisor, Jens Dalgaard Nielsen, for assis-
tance during the project period.

Aalborg, December 2004

Jens Frøkjær Palle B. Hansen

Martin L. Kristiansen Ivan V. S. Larsen

Dan Malthesen Tom Oddershede

Rene Suurland





Contents
I Analysis 9

1 Robocode 11
1.1 Introduction to Robocode . . . . . . . . . . . . . . . . . . . . 11
1.2 The Battlefield . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Heading and Bearing . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Power and Energy . . . . . . . . . . . . . . . . . . . . 16

1.5 Robocode Robot . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Teamplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Agents 23
2.1 Reactive Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Deliberative Agents . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Reactive vs. Deliberative Agents . . . . . . . . . . . . . . . . 28
2.4 Hybrid Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Adaptive Agents . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Team Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Models for Reasoning and Machine Learning 33
3.1 Representation of Uncertainties . . . . . . . . . . . . . . . . . 33
3.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Causal Network . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Fractional Updating . . . . . . . . . . . . . . . . . . . 37
3.2.3 Fading Fractional Updating . . . . . . . . . . . . . . . 38

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Motivation Behind Artificial Neural Networks . . . . . 39
3.3.2 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Training Perceptrons . . . . . . . . . . . . . . . . . . . 41
3.3.4 Gradient descent . . . . . . . . . . . . . . . . . . . . . 42
3.3.5 The Backpropagation Algorithm . . . . . . . . . . . . . 44
3.3.6 Convergence and Momentum . . . . . . . . . . . . . . 47

3.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 48



6 CONTENTS

3.4.1 The General Algorithm . . . . . . . . . . . . . . . . . . 49
3.4.2 The Fitness Function . . . . . . . . . . . . . . . . . . . 52
3.4.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Selection and Ranking Individuals Functions . . . . . . 54

4 Project Goals 57

II Design 59

5 Component Design 61
5.1 Module Design . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 General Strategy Layer . . . . . . . . . . . . . . . . . . 62
5.1.2 Strategic Modules Layer . . . . . . . . . . . . . . . . . 63
5.1.3 Interaction Modules Layer . . . . . . . . . . . . . . . . 63

5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Machine Learning Design 71
6.1 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3 Updating the Network . . . . . . . . . . . . . . . . . . 75

6.2 Overall Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Aiming System . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Input and Output Representation . . . . . . . . . . . . 77
6.3.2 Training the Network . . . . . . . . . . . . . . . . . . . 80

6.4 Move Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

III Implementation, Test and Conclusion 85

7 Implementation 87
7.1 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Size Does Matter . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Representation . . . . . . . . . . . . . . . . . . . . . . 88
7.1.3 Data Storage . . . . . . . . . . . . . . . . . . . . . . . 89
7.1.4 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Aiming System . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.1 Off-line Learning . . . . . . . . . . . . . . . . . . . . . 91
7.2.2 On-line Learning . . . . . . . . . . . . . . . . . . . . . 91

7.3 Move Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



CONTENTS 7

8 Test 97
8.1 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.2 Implementation and Conclusion . . . . . . . . . . . . . 98

8.2 Aiming System . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 99
8.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 Movement Pattern . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3.2 Test Output . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.3 Test Conclusion . . . . . . . . . . . . . . . . . . . . . . 106

9 Conclusion 109
9.1 Further Development . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 112





I
Analysis





1Robocode
It seems agents are everywhere today. Agent implementations are used in a
lot of systems that need to somehow make intelligent decisions, for exam-
ple biological systems, industrial robots, and aircrafts. An agent is called
autonomous when it is able to map received input to output in the form
of an action or a specific diagnosis without being controlled by an external
authority[9]. The use of autonomous agents is indispensable in many situa-
tions. Consider a robot that is used for exploring the surface of the planet
Mars. Such a robot would benefit from having some kind of decision support
system, because every time it encounters an obstacle it would be terribly
inefficient had the robot have to waste precious time messaging Earth asking
for instructions. This would be prevented if the robot had a system that
could decide what to do based upon a number of input variables. For this
project, machine learning and decision support mechanisms will be applied
in the development of autonomous agents for a simulated battlefield, called
Robocode.

1.1 Introduction to Robocode

Robocode is an environment in which virtual robots, developed in Java, can
battle against each other. The robots simulate tanks in a battlearena, and
in order to find other robots they are equipped with radars. A robot can
move forwards and backwards at different speeds and turn left and right.
The radar and turret can be turned left or right independently of each other
and the rest of the tank. And finally, the gun can be fired.

When setting up a battle, it is possible to watch the battle played out on the
screen, or just letting the computer simulate the battle without showing the



12 Robocode

graphics. The latter will complete the battles faster, because the battle does
not have to be rendered on the screen.

When an enemy robot is spotted with the radar, an event is generated,
and the appropriate action can be taken by our robot. It is possible to
get information about the robot being spotted, such as velocity, heading,
remaining energy, name, the angle between the heading of your own robot
and the robot being spotted, and the distance to that robot. During the
game these pieces of information will form the basis for the actions to be
taken by our robot. For example when spotting an enemy robot, the gun
could simply be told to fire. But in which direction is the turret currently
pointing? Obviously, the gun has to be pointing in the direction of the robot
you want to fire at. But with knowledge about the enemy robot’s heading
and speed, there are further considerations that can be taken into account
when computing the direction in which the gun should be fired, because
you have to compensate for the fact that the enemy is on the move. Such
considerations will optimize the chances of hitting the target.

Robots in Robocode can battle against each other in teams. By commu-
nicating with each other, they can exchange information about where they
have spotted opponent robots etc. And based upon a chosen strategy, a ro-
bot might choose to run away from opponents or perhaps letting your team
gather round an opponent robot, and try to take it out.

The purpose of this chapter is to describe the environment in which the
robots of Robocode fight. In order to understand this world it is necessary
to understand the laws of physics that control it.

1.2 The Battlefield

The battlefield is where all the fights take place. It is a two-dimensional plane
surrounded by walls. A position on the battlefield is a pair of coordinates
(x, y). The origin (0, 0) of the battlefield is placed in the left bottom of the
battlefield, see Figure 1.1(b). This means that a coordinate (x, y) on the
battlefield will always be a pair of positive real numbers.

The following methods from the Robocode API can be used for getting in-
formation about the size of the battlefield and the position of robots. These
methods can be found on the Robot class:



1.2 The Battlefield 13

(a) Shows the concept of bearing

(b) Shows the bearing b = 60◦ between two robots, r1 and r2

Figure 1.1: Bearing



14 Robocode

• getBattleFieldHeight()

• getBattleFieldWidth()

• getX()

• getY()

1.3 Heading and Bearing

In order for the robots to know the position and direction of enemies, they
must have some data to calculate these from. This is where the heading
and bearing are vital. The following sections will describe how heading and
bearing are implemented in Robocode.

Heading

When a robot is moving, it has a heading. This heading can be acquired for
robots in Robocode using the getHeading() method on an instance of the
Robot class. We can acquire the heading of our own robot as well as other
robots being scanned by the radar.

The heading in Robocode is measured clockwise from 0◦ to 360◦. An im-
portant thing to note is that a heading of zero degrees is achieved when the
robot is facing north on the battlefield, see Figure 1.2(a). Usually, in math-
ematics, an angle of zero degrees means that the robot is facing east on the
battlefield, see Figure 1.2(b). This means that using normal trigonometry
functions like sin(x), cos(x), and tan(x) will not yield the expected result.

If one wants to convert from conventional degrees n into Robocode degrees
r, Equation (1.1) can be used.

r =

{
90− n if n < 90
450− n if n ≥ 90

(1.1)

Bearing

Bearing is a direction in the interval −180◦ to 180◦ relative to your current
heading. A bearing from 0◦ to −180◦ will be on the left side of the robot and
a bearing from 0◦ to 180◦ will be the right side of the robot, see Figure 1.1.



1.4 The Environment 15

(a) Robocode (b) Conventional mathe-
matics

Figure 1.2: Shows the difference between the orientation of angles as they
are used in Robocode and conventional mathematics.

1.4 The Environment

This section will explain the most important parts of the Robocode environ-
ment. It is important to understand the environment in which the robots
act, in order to implement a working robot.

Let us start by explaining how Robocode handles time and distance.

Time is measured in ticks. At the start of a game the tick count is set
to 0 and all robots are told to execute their commands. After a set
time interval all robots are halted and the tick count is incremented.
If a robot has not executed all its commands when this happens, the
commands are simply discarded. This then repeats itself until the game
ends. One tick = one frame = 1 turn. When a new round begins the
tick counter is reset.

Distance is measured in pixels. The smallest possible battlefield in Robocode
is 400× 400 pixels and the largest is 5000× 5000 pixels.

1.4.1 Main Loop

To control the game, Robocode has a built in loop, called the Battle Manager,
see Figure 1.3. The Battle Manager basically works as a program that uses
the different robots as plug-ins. Every robot has its own thread, which has
its own event queue. Events are generated whenever something happens over
which we have no direct control. This could be when our robot collides with
a wall, an enemy is scanned with the radar, etc. These events are put in the



16 Robocode

• All robots execute their event-queue.

• The time is increased by one.

• All bullets are moved.

• Collisions are checked.

• All robots are moved in the following order:

– Heading

– Acceleration

– Velocity

– Distance

• The robots perform scans and all team communication is done.

• The battlefield is updated.

Figure 1.3: Pseudo code of the battle manager

event queue by the Battle Manager. The events are then carried out by the
robot itself. This separation of the game and the robots has been made to
prevent poorly programmed robots from taking the game down by entering
a dead lock or causing some other fatal error to occur.

1.4.2 Power and Energy

The concept of power and energy is central to the Robocode game. A robot
is given an amount of energy at the start of every game, and a robot can
then lose and gain energy during the game. Energy is gained if your bullets
hit other robots and energy is lost if a bullet hits your robot. A typical robot
has energy 100 at the start of a game.

Power is the amount of energy put into a bullet when fired. This means that
a robot will lose energy when firing a bullet. The more powerful the shot, the
more energy will be lost. There is a one-to-one relationship between power
and energy, meaning that a shot given power 0.5 will subtract 0.5 from the
energy of the robot. Equation 1.2 describes this relationship.

∆eshot = −p (1.2)



1.4 The Environment 17

Power p is a defined as a range

p = [0.1; 3.0] (1.3)

Equation 1.4 describes the change in energy ∆egain of a robot, if one of its
bullets hits another robot. p is the power given to the bullet.

∆egain = 3 · p (1.4)

The amount of energy our robot currently has can be acquired by calling the
getEnergy() method on the Robot class.

Equation 1.5 describes the change in energy ∆elost of a robot, when it is hit
by a bullet with power p.

∆elost =

{ −4 · p if p ≤ 1
−4 · p− 2 · (p− 1) otherwise

(1.5)

The amount of energy a robot loses when driving into another robot is 0.6.

Equation 1.6 describes the speed of a bullet s as a function of the power p
given to the bullet. s(p) is measured in pixels

tick
.

s(p) = 20− 3 · p (1.6)

Equation 1.7 describes the change in energy ∆elost of a robot when driving
into a wall with velocity v.

∆elost = −|v| · 0.5 + 1 (1.7)

Equation 1.8 describes the amount of heat generated when firing a bullet
with power p. The gun will not be able to fire again until it has cooled down
(gunheat = 0) from firing the last bullet.

gunheat = 1 + (p · 5) (1.8)

Equation 1.9 describes the time before a gun is able to fire again.

ticksToFire =
gunheat

0.1
(1.9)



18 Robocode

Figure 1.4: Shows Equation 1.2, 1.4, and 1.5

1.5 Robocode Robot

The robots in Robocode consist of three parts: a radar, a gun, and a vehicle.
A representation of a robot can be seen in Figure 1.6. The three parts
of a robot are able to move independently of each other. Since the radar
is mounted on the gun, which again is mounted onto the vehicle, the three
parts can influence each other. An example taken from the Robocode FAQ[6]
explains this better:

“If you are turning the gun left, and turning the radar right, the
radar will only turn (45 - 20) = 25 degrees to the right. On the
other hand, if they are both turning right, it will turn (45 + 20)
= 65 degrees to the right. And of course, since the gun mounted
on the body...”

The maximum rate of rotation of the gun is 20◦
tick

, which is added to the current
rate of rotation of the robot. The maximum rate of rotation of the radar is



1.5 Robocode Robot 19

Figure 1.5: The graph shows the speed of a bullet s as a function of the
power p given to the bullet, Equation 1.6

45◦
tick

, which again is added to the current rotation rate of the gun.

In Robocode it is faster for a robot to slow down than it is for it to speed
up. The acceleration of a robot is 1pixels

tick2 and deceleration is 2pixels
tick2 .

The velocity of a robot can be acquired by using the getVelocity() method
on an instance of the Robot class. The velocity of a robot is a range from
−8 to 8 pixels

tick
.

The rate at which it is possible to turn a vehicle depends on the velocity of
this vehicle. Equation 1.10 describes how hard the robot is able to turn at
velocity v. The turning rate t(v) is measured in degrees

tick
.

t(v) = 10− 3

4
∗ |v| (1.10)

A Robocode robot can inherit from three different robot classes: Robot,
AdvancedRobot, and TeamRobot, see Figure 1.7. The difference between the
first two is that the AdvancedRobot class allows non-blocking calls, custom
events, and the possibility to write to a file. With support for non-blocking
calls, you can tell your robot to drive forward, turn the radar, and turn the
turret–all at once. With the simpler Robot class you would have to wait
for one event to end before starting another. The final class, TeamRobot,
makes it possible for robots to communicate with each other and thereby
make team-based decisions.



20 Robocode

Figure 1.6: A Robocode robot

1.6 Teamplay

In Robocode a team is a collection of robots working together to defeat
the enemy. Initially robots are not able to communicate with each other,
and because of this it is virtually impossible to build a cooperating team
of robots. Robots must extend the TeamRobot class in order to provide
inter-robot communication, as this class contains methods for sending and
receiving messages between robots. It is possible to send messages as either a
broadcast or a direct message. A message sent as a broadcast message reaches
all robots in a team, while direct messages reach only a single teammate. The
TeamRobot class also provides robots with the possibility to check whether
another robot is a teammate or not. Furthermore, a team in Robocode has
a leader. The first robot added to the team is automatically made leader of
the team. The leader gets a bonus in energy of 100 points, resulting in a
total of 200 energy points. Robocode also provides the possibility of using
droids, which are essentially normal robots with 20 more energy points and
no radar. Droids will of course only work in a team-based game, where they
rely on the robots with radar for information about what is happening on the
battlefield. Droids have the advantage of 20 extra energy points, but they
will be in serious trouble if the teammates with radars get killed.

This chapter outlined the rules and mechanics of the Robocode game. Based
on these rules it is now necessary to study autonomous agent design. The
Robocode framework allows for a various range of control structures, so a
design must be decided for the different controls and a general behavior



1.6 Teamplay 21

Figure 1.7: Robot classes in Robocode

pattern must be decided.

The primary goal for this research aims to construct a team of robots that
implements various machine learning and models for reasoning techniques.
This is looked into in the following chapter.





2Agents

This chapter will examine some of the more popular agent architectures so
that an informed decision can be made to which systems would be useful
when implementing a robot for Robocode.

2.1 Reactive Agents

This section is mainly based on The Design of Intelligent Agents by Jörg P.
Müller[9].

Reactive agents react upon inputs obtained from sensors. These agents are
considered to be the fastest kind of agent to execute since they must only
react based on tactics that are known beforehand, which only have to be
compared with the stimuli. These decisions are made at run-time.

A reactive agent works by executing a rule matching the current input. This
rule could be run-away-and-hide, attack, or search-for-targets. Since the de-
cision is not based on elaborated reasoning or planning, the calculations are
not computational complex and therefore faster to execute. The focus of
reactive architectures is to make agents with robust behavior instead of op-
timal behavior, meaning that an agent using the reactive architecture will
continue functioning even if you suddenly place it in a totally different envi-
ronment. This is because the agent will react based on the input it receives
from its sensors. It does not care about how the surrounding world looks, and
therefore it will not have to construct and maintain a model of this world.

The most frequently used reactive architecture for implementing agents that
operate alone is the subsumption architecture [12]. A robot implemented us-
ing the subsumption architecture is organized in a vertical layered structure,



24 Agents

Figure 2.1: The reactive architecture is divided into layers.

where the topmost layers have precedence over lower layers and the upper
level subsumes the output of lower layers, hence the name subsumption ar-
chitecture. These agents are flexible, meaning that they are able to work in
a changing environment and they have the capability to have multiple goals.
The lower layers are used for implement basic behavior, such as drive around
and avoid hitting the walls, whereas the higher levels are used for fulfilling
the goals of the robot, such as trying to hit other robots and avoid getting
hit.

In order to demonstrate this model consider the example concerning a moun-
tain climber. This model has two layers, a “climb” layer and a “hang on”
layer, which is shown in Figure 2.1. These layers react upon inputs from sen-
sors which are obtained while climbing the mountain. Now, if the “climb”
layer receives input, for example that the mountain climber sees a new rock
where he can place his hands in order to keep climbing, he will keep climbing.
If the “hang on” layer receives input, for example that the mountain climber
looses grip with his feet, then the mountain climber tends to hold on to the
rock he already has a grip on. If the two layers both receive heavy input,
the agent will prioritize some actions over others. So if the mountain climber
looses grip with his feet and sees a new rock at the same time, he will tend
to hold on with his hands instead of keep climbing as the “hang on” layer is
at a higher level than the “climb” layer (the “hang on” layer subsumes the
output of the “climb” layer).

One of the advantages with the subsumption architecture is that it is fast
because it just reacts upon the input it receives from its sensors. This is very
useful when implementing systems that have a limited amount of calculation
time, like for instance Robocode.

One of the major drawbacks with a pure reactive architecture is that there
is no way to make the layers communicate with each other. For example
consider again the example with the mountain climber. Maybe the optimal
solution in case the mountain climber looses grip with his feet would be to



2.2 Deliberative Agents 25

hold on to another rock because it offers a better grip. But as the “hold
on” layer subsumes the “climb” layer, it does not look at which solutions the
layers below have suggested. This is clearly a disadvantage since the layers
below might help making a decision, as the lower levels can strengthen the
belief of the decision of the “hold on” layer.

Another drawback with a pure subsumption architecture is that there is no
obvious way to implement communication between robots that are cooper-
ating as a team. The problem is that there is no natural placement for a
communication layer. Consider that the communication is placed as the top
layer. It will subsume output from all other layers, and therefore it will never
do anything “intelligent” other than communicating with other robots. If on
the other hand the communication layer is placed on a lower level, higher
levels will subsume the communication with other robots.

2.2 Deliberative Agents

A deliberative agent will at all times, using an appropriate symbolic repre-
sentation, maintain an overview of the world in which it operates. Typical
considerations when implementing this agent architecture is that all com-
putation concerning the surrounding world must be done in time for it to
be useful. This means that the implementer of such an agent should con-
sider how this, sometimes very complicated, world should be symbolically
represented, and how calculations on this representation should be done.
Environments that are very dynamical, as in fast-changing, require calcula-
tions to be done quickly, as actions need to be performed before they expire.
Static environments are more forgiving in this aspect, as you, in theory, have
all the time in the world to perform calculations. This also means that there
is a trade-off between calculation time and the amount of detail in the world
model.

This section is mainly based on Deliberation by Derek Bridge [3]. Deliber-
ative agents are said to “think ahead”. This means that deliberate agents
will consider a sequence of actions prior to execution and thereby utilize the
gathered effect of multiple actions (consider, for instance, the way players
think ahead in a game of chess).

But how do deliberative agents consider a whole sequence of actions in order
to think ahead? A simulation is done where three things are required and
iteratively reconsidered:



26 Agents

Execute sequence
of actions

Plan sequence of
actions to reach
goal state

Get initial
world model

Figure 2.2: Simulation with a static world model

1. A model of the initial world. The effects of the chosen actions will be
simulated on this model.

2. A set of actions provided by the agent.

3. A goal condition that specifies how the world should look, in order for
the agent to achieve its goal.

There are two ways of doing this simulation. If the world in which the agent
operates is static, then we only need to consider a sequence of actions to take
once. After inspecting the world, as it looks initially, the agent will plan a
sequence of actions, that will achieve its goal condition. An example of this
would be a mountain climber, trying to plan an optimal route for climbing
a mountain. This type of simulation is represented in Figure 2.2.

If the agent is operating in a dynamic world, meaning a world that is con-
stantly changing, then we need to go about things a little differently. Initially
we do just as before, calculating a sequence of actions that will, if sequen-
tially executed, achieve the agent’s goal. What is different, is the fact that
after this calculation, we only execute the first action. This is because the
world is constantly changing, and we do not know if the actions that were
applicable before are applicable any more. After executing the first action we
go back and start over. This makes for an agent that will adapt its behavior
according to the world as it changes over time. This simulation is represented
in Figure 2.3.

However, it might not always be desirable for an agent to consider every
single step to take for it to achieve some goal, because this consideration
must be done at every turn when in a dynamical world model, and it might
easily be too time consuming. In a setting such as Robocode this inefficiency
is a crucial factor in your ability to stay alive. This approach is similar to
gradient descent, which also takes small steps towards a minimum explained
in Section 3.3.3. It might be useful if the agent only considered a smaller



2.2 Deliberative Agents 27

Plan sequence of
actions to reach
goal state

Get initial
world model

Execute only
first action

Figure 2.3: Simulation with a dynamic world model

sequence of steps to take. This way an agent would be able to operate more
efficiently, while still maintaining the ability to choose sensible actions to
perform.

The question of how far an agent should look ahead in order to make these
choices is determined by the context in which it operates. The more dynamic
the world, the more unpredictable it will be. A world that is very fast-moving
will not require an agent to look very far ahead, since choices made several
turns ago quickly loose their validity. A world that is relatively static will
give an agent the opportunity to look further ahead. It can be argued that
the further an agent looks ahead, the more accurate or correct its choices
will be, but in a fast-moving world these choices might still be very hard to
make correctly.

Architectures following the deliberative architecture has become known as
Belief, Desire, Intention architectures. The last part of this section is mainly
based on The Design of Intelligent Agents by Jörg P. Müller[9]. The Belief,
Desire, Intentions (BDI) architecture is a field that has become very popular
in the research of agent design. An agent designed using the BDI architecture
works by utilizing a set of mental categories. These categories are belief,
desire, and intentions.

Belief is a category describing expectations on how the world will look after
a set of actions is performed. This way the agent can determine which
actions to perform in order to achieve some effect.

Desire is the mechanism that ensures that the agent is able to associate
a preference with different states of the world. This means that an
agent can have a high desire to achieve some arbitrary state of world.
It is important to note that the agent does not have to believe that its
desires are achievable.



28 Agents

Intentions are necessary since agents are not able to pursue all desires
(goals) at once. An agent must select a single desire (or set of desires)
to pursue – these are the intentions of the agent.

More practical approaches have added the notions of goals and plans.

Goals is the subset of desires that the agent believes to be achievable. Goals
were introduced to the BDI architecture because of the weak definition
of desires.

Plans are collections of intentions. This means that it is possible to combine
intentions into larger plans. An agent’s intentions are defined by the
plans it has currently committed to.

2.3 Reactive vs. Deliberative Agents

Deliberative agents are most often more advanced than their reactive coun-
terparts. Whereas reactive agents function by simply looking through a set of
predefined behaviors, deliberative agents work more informed by modelling
the world around them, allowing them to predict consequences of actions
determined by a set of behaviors. Looking at reactive agents, we see that
they function by searching through a set of actions looking for an action
that fits the agents current situation exactly. This in effect means that re-
active agents are unable to make decisions that utilize the gathered effect of
multiple actions.

An advantage of deliberative agents is the fact that a lot of the effort invested
in the implementation of the agent is moved from design-time to run-time.
Reactive agents require a large set of actions in order to ensure that every
possible situation it might find itself in will cause the right action to be exe-
cuted. These actions must be cleverly thought out and provided to the agent,
either by designing them by hand or by evolution or learning. Deliberative
agents do not require such an extensive set of actions to be supplied by the
designer (or by evolution or learning). This is because when dealing with de-
liberative agents, it partly becomes the responsibility of the agent to choose
the right action for any given situation.

In conclusion a pure implementation of the reactive architecture would not be
optimal for this Robocode project, as we are implementing agents that will
be part of a team. Teams are problematic to design using a purely reactive
architecture. This, however, does not mean that the reactive architecture is
completely omitted from this project.



2.4 Hybrid Agents 29

2.4 Hybrid Agents

The approach of making the implementation using a purely deliberative or
reactive agent has been discussed and argued that both architectures suffer
from different shortcomings when making an intelligent robot[9]. Because of
this a combination of the two architectures is proposed. This combination
does not suffer from the drawbacks that an implementation based on a pure
architecture does.

Whereas reactive agents cannot be implemented containing a goal-directed
behavior, the deliberative agents are based on general reasoning and therefore
much less reactive. The idea is to organize the functionality of the agent types
into layers that are hierarchically organized. This has the advantage that the
agent’s reactivity is preserved while it still maintains a model of the world.
Another advantage with the hybrid architecture is that it is possible to add
team communication to a reactive model, which is not possible in a pure
reactive model.

Therefore a hybrid architecture is chosen for the our Robocode robots. This
way the reactivity is kept while still maintaining a model of the world, in
order to let the robots share information about enemies and bullets.

2.5 Adaptive Agents

Adaptive agents are, as the name implies, able to adapt to their environment.
They utilize learning algorithms that allow the agent to react to situations
according to previous experiences. In other words, an adaptive agent will get
smarter along the way. This will enable us to develop agents that are very
effective in their environment.

There are several tasks in the agent that can be trained by a “network”.
One could consider movement as a task to be learned, as is aiming and
shooting. According to Thomas J. Loredo and David F. Cherno, a Bayesian
network could be constructed for reactive movement, this is well documented
in the article “Bayesian Adaptive Exploration”[13]. The framework for such
a net could be constructed by using the previous movement combined with
the terrain information along with information about possible collisions with
other agents. The same approach could be taken with shooting and aiming.



30 Agents

2.6 Team Models

When implementing agents that have to cooperate, several different ap-
proaches can be taken. Questions that need to be asked are: Is some sort of
central (or distributed) coordination needed or is it possible for autonomous
agents to decide by themselves what to do?

When working with robots that extend the TeamRobot class it is possible
for the robots to send messages to each other. A message arriving at the
receiving robot is exactly identical to when it was sent. This is in contrast
to some real world examples, for example radio-transmitted messages which
are affected when sent through the air.

The only sensor from which a robot in Robocode can get information about
the environment, is the radar. But since the radar only has a limited range
and field of view, it is impossible for a robot to know everything about
the environment all at once. Therefore maintaining a world model with
information gathered by all robots is an advantage.

Basically, two different methods can be used in Robocode when battling in
teams. One robot could decide what strategy to use and how to execute
it, and then order the other robots around. The other possibility is that
each robot could decide by itself what to do. No matter which of the two
approaches is chosen, the more information known about the environment,
the better they will perform. On the other hand, each robot is only given a
limited time slice in each round, and therefore the information exchange has
to be limited. If a robot discovers something, it can choose to tell the others
about it. But if the other robots will discover it themselves within a certain
amount of time, the information need not be exchanged. Therefore deciding
what information to put in the world model, and thereby telling the other
teammates, is important.

If one robot is chosen to decide what the other robots should do, this robot
will look at the world using the accumulated vision of its own and all the
teammate’s radars. It will figure out some plan to execute and then tell the
other robots what to do. But if one robot is chosen to lead the others, there
will be a larger timespan from information is collected until actions, based
on that information, are carried out. This is because messages sent in round
x do not arrive until round x + 1. Actions planned from these messages are
then computed, and new messages containing these plans are sent out. They
will arrive in round x + 2 where they will be carried out. That time can be
halved if there is no centralized coordination. When each robot has received
its messages in round x+1, they can compute and execute their plans in that



2.6 Team Models 31

same round. To illustrate the point, we use the knowledge from Section 1.5,
that the maximum velocity for a robot is 8 pixels

tick
. This means that a robot

can move as much as 16 pixels in 2 ticks. Obviously, more accurate plans can
be computed using information that is as new as possible, and centralized
coordination provides more delay than distributed does.

(a)

(b)

Figure 2.4: Showing time span with or without leader.

If a model with centralized coordination is chosen, the first step is to decide
at which level the leader should hand out orders. It could tell each robot
what to do at the lowest level, e.g. “go forward 100, turn x degrees right, fire
with power p”. Or the orders could be more general, like “defend a certain
area, follow a robot, attack”. If a model based on general orders is chosen,
the leader could assign different roles to the robots on the team. Roles could
be e.g. attacker, information collector, or protector. If coordination is done
by letting the leader tell the teammates exactly what to do (lowest level),
the leader will be able to carry out a strategy exactly as planned, as the
leader has total control over all the robots on the team. There is however
one major disadvantage with a centralized control mechanism. If the leader
is killed, there will be no one to give the orders, and thereby rendering the
other robots useless, because they will not know what to do.

Without central coordination, roles could also be used. Robots could look at



32 Agents

the other robots on the team and figure out what roles they have taken on,
and then decide which role to play themselves. When using this approach,
the team communication is increased because the robots must communicate
collected information to all teammates since they all must maintain a model
of the world on their own. This approach has the advantage that there is no
“weak link,” meaning that if one of the robots die, the others will just carry
on, functioning as they did before. Each robot has their own world model and
is able to decide what to do based on this model. Another advantage when
having no centralized coordination is that a robot is able to react promptly
upon unexpected obstacles, because it does not have to communicate with
the leader to get instructions on what to do.

There are several ways to choose which target to attack. One way is simply
to choose the nearest target and attack it. This has the disadvantage that all
robots on the team could end up choosing unique enemies to attack and as a
consequence get killed because the robots “forgot” to utilize team behavior.
Perhaps the battle could have been won if some of the robots had chosen
the same target and attacked the enemy as a team would. So the question
is how the robots should decide which enemy to attack. One way is to base
the decision upon previous experiences from situations that look like the one
that the team is currently in. When a robot chooses a target it tells the
other robots which target it has chosen. With this information the other
robots will be able to decide whether or not they should attack the same
robot also. An example: If a fellow robot chooses an enemy with low energy
that is a certain amount of pixels away from you, you must “look up” if a
similar situation has been experienced before. If so, how was the outcome of
this previously experienced situation? If the outcome was good you should
do as you did then.

Another approach is making the deciding robot ask the team if anyone can
assist in attacking an enemy. If someone answers, the robot will choose which
robots it wants to get help from.

Having considered several agent architectures, the choice for this project fell
on a hybrid architecture. Now that we are familiar with the most general
agent designs, the time has come to study which machine learning techniques
will be useful when implementing a Robocode robot. It is important to realize
what properties are important in the different kinds of machine learning
techniques and how to use them efficiently in our agent implementation.



3Models for
Reasoning and

Machine Learning

This chapter will examine some different models for reasoning and machine
learning technologies. Each of these technologies could be utilized when
implementing the tasks a Robocode robot must perform. This chapter will
try to outline the strengths and weaknesses of each of these technologies as
well as look at which type of tasks each of them is suitable for.

3.1 Representation of Uncertainties

This section is based on lecture notes from lecture 1 of the course Decision
Support Systems and Machine Learning [10] and Chapter 1 from Bayesian
Network and Decision Graphs [5].

Nothing is certain in decision support systems, so the first thing we need to
do is formalize a probability:

Definition 1 A probability x ∈ [0; 1], where x represents how likely it is that
some event will occur. A probability of 0 means that the event will never
occur, whereas a probability of 1 means that the event will always occur.

Furthermore we need to have formalized definitions of several other notions.



34 Models for Reasoning and Machine Learning

Definition 2 If events a and b can never occur at the same time, we call
them mutually exclusive.

Definition 3 We write the probability of an event a, as P (a).

Definition 4 We write the probability of either event a or b occurring, as
P (a ∨ b).

Definition 5 We write the probability of both event a and b occurring, as
P (a ∧ b) or P (a, b).

If event a and b are mutually exclusive P (a ∨ b) = P (a) + P (b).

Definition 6 The probability of a given b is written as P (a|b).

The definition above expresses our belief in a after b has been observed.

Definition 7 A is a variable with states {a1, . . . , an}, then P (A) = (x1, . . . , xn)
where xi = P (ai). aj must always be mutually exclusive of ak for aj, ak ∈
{a1, . . . , an} and aj 6= ak, furthermore

∑n
i=1 xi = 1

Definition 8 Given two variables A and B where A has i states and B has
j states, P (A|B) is a i× j matrix.

b1 b2 b3

a1 0.2 0.3 0.5
a2 0.8 0.7 0.5

Figure 3.1: Example of P (A|B)

Figure 3.1 shows P (A|B) where A has the states a1, a2 and B has b1, b2, b3.
Notice that the columns sum to 1.

Definition 9 We write the joint probability of two variables A and B as
P (A,B). If A has i states and B has j states, P (A,B) is a i× j matrix.

It is possible to construct the joint probability P (A,B) from the conditional
probability P (A|B) and P (B) using Equation 3.1.

P (A|B)P (B) = P (A,B) (3.1)



3.2 Bayesian Networks 35

b1 b2 b3

a1 0.06 0.06 0.25
a2 0.24 0.14 0.25

Figure 3.2: Example of P (A,B)

Equation 3.1 is known as the fundamental rule. Figure 3.2 is the result of
applying the fundamental rule to Figure 3.1 if P (B) = (0.3, 0.2, 0.5).

A mathematical rule that explains how beliefs should be changed based on
new evidence is shown in Equation 3.2.

P (B|A) =
P (A|B)P (B)

P (A)
(3.2)

Equation 3.2 is known as Bayes rule. It is easy to construct a proof for Bayes
rule: P (B|A)P (A) = P (A,B) = P (A|B)P (B).

From a probability table P (A,B) the probability of P (A) can be calculated
by using Equation 3.3

P (A) =
∑
B

P (A,B) (3.3)

Equation 3.3 is called marginalization. We say that we marginalize B out of
P (A,B). If A has i states and B has j states, P (A) =

∑
B P (A, B) should

be read as P (an) =
∑j

k=1 P (an, bk) for each n ∈ [1; i].

P (A) = (0.06 + 0.06 + 0.25, 0.24 + 0.14 + 0.25) = (0.37, 0.63)

Figure 3.3: B marginalized out of P (A,B) from Figure 3.2

Definition 10 We say that we have evidence on a variable if we know in
which state the variable is.

If we have evidence on B in Figure 3.1 we could write P (A|B = b1) =
(0.2, 0.8).

3.2 Bayesian Networks

The following section is based on Chapter 1-4 in Bayesian Network and De-
cision Graphs [5].



36 Models for Reasoning and Machine Learning

(a) (b)

Figure 3.4: Two boring Bayesian networks

Figure 3.5: Simple Bayesian network for an internet connection

3.2.1 Causal Network

A causal network is an acyclic oriented graph where vertices are variables and
edges are causal relations. Causal relations could be considered as causes–
hence the name. Figure 3.4(a) should be read as A is the cause of B and B
is the cause of C, and Figure 3.4(b), B is the cause of A and C.

In the example in Figure 3.5 we see that if the internet connection is down,
this can be either the network cable being unplugged or the ADSL being
down–possibly both. The ADSL could be down because of either a power
failure in Copenhagen or Aalborg. Of course there can be a large number
of other reasons for this misshapen, but in the simple example in Figure 3.5
these reasons are not modelled.

In a Bayesian network each vertex is a variable and each variable’s probability
is specified as the condition given its parents. In Figure 3.4(a) we need to
specify P (A), P (B|A), and P (C|B), and in Figure 3.4(b) P (B), P (A|B),
and P (C|B). If all variables in Figure 3.5 are binary, they will each have two
states, {OK, FAILED}. The following tables needs to be specified:

• P (Power CPH) (2 parameters)

• P (Power Aalborg) (2 parameters)

• P (ADSL up|Power CPH, Power Aalborg) (8 parameters)



3.2 Bayesian Networks 37

P (Power CPH) = (0.999, 0.001)
P (Power Aalborg) = (0.997, 0.003)

P (ADSL|Power CPH, Power Aalborg) =
Aalborg\CPH

OK FAILED

OK (0.99, 0.01) (0, 1)
FAILED (0, 1) (0, 1)

P (Netcable plugged) = (0.98, 0.02)

P (Internet|ADSL, Netcable) =
Netcable\ADSL

OK FAILED

OK (0.99, 0.01) (0, 1)
FAILED (0, 1) (0, 1)

Figure 3.6: Example of probabilities for Figure 3.5

• P (Netcable plugged) (2 parameters)

• P (Internet|ADSL up, Netcable plugged). (8 parameters)

which is a total of 22 parameters. It could be argued that it is only necessary
to specify P (Internet|Power CPH, Power Aalborg, ADSL up, Netcable plugged),
which is correct, but it would result in a total of 32 parameters. A Bayesian
network can be seen as a compact representation of the full joint probabil-
ity, because when applying the Fundamental rule to the network one can
always get the full probability table. The reason for the smaller number of
parameters is that there is an assumption of independence. It could be that
there, for example, was no connection between Power Copenhagen and Power
Aalborg. This assumption is probably wrong, so the assumption is that the
connection is very small.

3.2.2 Fractional Updating

Bayesian networks are based on static statistic information, this statistical
data could have been implemented into the network by an expert, who knows
the exact probability values of the data. But if there is no expert, a Bayesian
network lack the ability to dynamically learn these data. One method for
achieving this ability is known as fractional updating. For example the prob-
abilities in Figure 3.7 could be learned from some data set. Figure 3.8 is an
example of such a data set for Figure 3.7.

The idea is that for each element in the data set, we update the probabilities
of P (A), P (C), and P (B|A, C). If we have a data element d = (a1, b1, c2)

we would update the probabilities of P (A) = (
na1+1

sa+1
,

na2

sa+1
) and P (C) =



38 Models for Reasoning and Machine Learning

Figure 3.7: A Bayesian network, A = {a1, a2}, B = {b1, b2} and C = {c1, c2}

A B C
a1 b1 c2

a2 b1 c1

a2 b1 c2

a1 b1 c1

a1 b1 c2

a2 b2 c2

a1 b1 c1

A B C
a2 b1 c2

a1 b1 c2

a2 b1 c1

a1 b2 c2

a2 b1 c2

a2 b1 c2

a2 b1 c1

A B C
a2 b1 c2

a2 b1 c1

a2 b1 c2

a1 b1 c2

a2 b1 c2

a1 b2 c1

a1 b1 c1

Figure 3.8: Example of data set for Figure 3.7

(
nc1

sc+1
,

nc2+1

sc+1
). Where sa and sc are the number of updates that have been

done to P (A) and P (C) respectively, and na1 is the previous number of seen
(a1, bx, cy) and na2 is the number of seen (a2, bx, cy), the same for nc{1,2} , sa

must always be equal to na1 + na2 and sc always nc1 + nc2 .

P (B|A, C) still needs to be updated. P (B|a1, c2) = (n1+1
s+1

, n2

s+1
), where s

is the number of updates that has been done to P (B|a1, c2) and n1 is the
number of previously seen data elements with the form (a1, b1, c2) and n2 the
number of data elements on the form (a1, b2, c2). Note that only 2

8
of the

parameters of P (B|A,C) is updated.

3.2.3 Fading Fractional Updating

The problem with the model just described, is that if the system runs for a
long time and there is a sudden change in the environment, then it would
literally take forever to get the previously learned data filtered out of the
system. In other words, it would take a very long time to get even a fair
approximation of the new environment. One way to overcome this problem
is to introduce a fading factor q ∈ [0; 1]. In the example from the previous

section we instead update P (A) = (
qna1+1

qsa+1
,

qna2

qsa+1
). The same goes for P (C)

and P (B|A,C). In this scheme all influence from the past will fade away
exponentially.



3.3 Neural Networks 39

s∗ =
1

1− q
(3.4)

s∗ from Equation 3.4 is known as the effective sample size, and is the value
that s will converge to.

Bayesian networks are well suited for problem domains where causal relations
can easily be established between discrete variables. Furthermore it is also
possible to use the Fractional updating to implement some sort of learning
mechanism.

3.3 Neural Networks

This section will deal with the idea behind using neural networks as deci-
sion support systems, how to build such a net with the use of perceptrons,
and how to update multi-layered neural networks using the backpropagation
algorithm. The section is based on Tom M. Mitchell’s Machine Learning [8].

3.3.1 Motivation Behind Artificial Neural Networks

The idea behind the neural network comes from studying the human brain.
According to the research field of neuron biology, the human brain consists
of approximately 1011 neurons, each connected to an average of 104 other
neurons. These dense neural networks are capable of very complex and fast
calculations/decisions. If we consider the fastest known neuron switching,
which is approximately 10−3 seconds, and then consider the switching speed
of a computer, which is around 10−10 seconds, our conclusion could be that
with a computer we can construct neural networks capable of making deci-
sions extremely fast.

We all know that computers still have a long way to go before we can even
begin to compare their “intelligence” to that of the human brain. Even
though computers can operate at speeds the human mind can only dream of,
the human brain is said to operate in a highly parallel manner that today’s
computers are nowhere near capable of. But still, the motivation behind
the neural network theory remains clear: To capture the process of learning
and decision making found in the most complex machine known to man–the
human brain–and use this to create a simplified model that resembles how
this process works.



40 Models for Reasoning and Machine Learning

Figure 3.9: A basic perceptron

3.3.2 Perceptron

One common type of building block for neural networks is the perceptron,
see Figure 3.9. The perceptron is basically a function that takes in a vector
of real-valued inputs, then maps this vector to an output of either 1 or −1.
It does this by calculating a linear combination of these inputs, in order to
evaluate whether the result surpasses some threshold. The output is 1 if the
result is greater than the threshold and −1 if its lower, see Figure 3.9.

To give a precise definition of the output function o, we look at the input
entries of the vector, x1, x2, . . . , xn, where n corresponds to the number of
observations or perceptions in our network.

o is calculated like this

o(x1, . . . , xn) =

{
1 if w0 + w1x1 + w2x2 + · · ·+ wnxn > 0

−1 otherwise
(3.5)

where wi is a real-valued constant weight. This weight determines the con-
tribution of the specific perception xi to the final sum of weighted percep-
tions. Note that −w0 is the threshold the sum of the weighted vector entries
w1x1 + w2x2 + · · ·+ wnxn must overcome for the function o to produce a 1.
If we modify this by introducing x0 = 1 we can write the inequality from
Equation 3.5 as

n∑
i=0

wixi > 0 (3.6)

or

~w · ~x > 0 (3.7)



3.3 Neural Networks 41

We can use this to simplify Equation 3.5 by denoting a new function sgn

sgn(y) =

{
1 if y > 0

−1 otherwise
(3.8)

3.3.3 Training Perceptrons

A perceptron produces an output based on the input vector and the vector
of weights. The goal for the perceptron is to produce ±1 as output, but for
this to take place we need to have the weights that will produce the desired
output. Since the weight vector is not known in advance, the perceptron will
have to “learn” the correct values. One approach is to initialize the weights to
random values, and then adjust the values by updating the weights according
to a set of training examples. This means updating the weights whenever
an example is encountered that does not produce the correct output. To
update the individual weights associated with input xi, we use the perceptron
training rule:

wi ← wi + ∆wi (3.9)

where

∆wi = η(t− o)xi (3.10)

in which t is the target output, o is the output generated by the perceptron,
and η is the learning rate.

The learning rate η is used for controlling how much is learned in each step,
meaning how much the weights are updated in each iteration. Note that if the
perceptron classifies the input correctly, ∆wi evaluates to zero because (t−o)
will yield zero. The perceptron training rule have been proven to converge to
the correct function given enough training examples and iterations, assuming
the training examples are linearly separable[8].

Unfortunately the perceptron training rule runs into a problem when trying
to classify training examples that are not linearly separable, see Figure 3.10
and Figure 3.11.

To overcome this obstacle we introduce the delta rule that uses gradient de-
scent to approximate the target concept. Gradient descent makes it possible
to guarantee that the delta rule converges toward some best-fit approxima-
tion.



42 Models for Reasoning and Machine Learning

Figure 3.10: A set of training examples classified correctly by the perceptron
training rule (+ denotes positive training examples, and - denotes negative
training examples).

Figure 3.11: A set of training examples that are not linearly separable, which
means it cannot be classified by a straight line.

3.3.4 Gradient descent

To find a “global minimum” one needs a direction to reduce the error margin
in an n-dimensional plane. This direction is decided by a gradient vector.
The gradient vector points towards the direction where the plane rises up the
most, given a location in the n-dimensional plane. The gradient vector can
be found by calculating the derivative of the error margin E with regards to
the vector of weight components ~w.

E(~w) = [
∂E

∂w1

,
∂E

∂w2

, ..,
∂E

∂wk

] (3.11)

The result of Equation 3.11 is a vector containing information about what
direction the error grows the fastest. The thing we are interested in is the
direction in which the error margin becomes smaller, this method of obtaining
the minimum error is known as gradient descent. The gradient descent is the
negated gradient vector ∆E(~w). Using this rule for training each component
in the weight vector, assign the new value to the ith weight by using Equation
3.12.

wi ← wi + ∆wi (3.12)



3.3 Neural Networks 43

where

∆wi = −n · ∂E

∂wi

(3.13)

Equation 3.13 changes wi, minimizing the error and moves towards a global
or local minimum. The positive number n is the learning rate, which decides
the size of the leap the update takes towards a global minimum.

There are two different ways to implement gradient descent: stochastic or
true gradient descent. The major differences are:

• True Gradient Descent (batch learning): This technique sums up the
error, which is the gradient vector, for the whole training set and up-
dates the weight vectors. Using this method is somewhat slower than
Stochastic Gradient Descent.

• Stochastic Gradient Descent (on-line learning): This technique updates
the weight vector after every input to the net. This results in the gra-
dient vector being updated every round and will possibly encounter a
number of small variations every round which might have been removed
when using true gradient descent. This property makes a Stochastic
learning technique more capable of handling irregularities.

The derivation of gradient descent can be seen in Section 4.4.3.2 in The
Design of Intelligent Agents[8] and is not something we will comment on
here. However, the use of gradient descent introduces another problem to be
considered. The perceptron, see Figure 3.9, uses a discontinuous threshold
which makes it unsuitable for the gradient descent, since this discontinuity
means that it is not differentiable and gradient descent uses differentiation
to calculate ∆wi as seen in Equation 3.13. A way around this problem is to
replace the discontinuous threshold with a new one. Figure 3.12 shows the
sigmoid unit, which is a common modification to the perceptron, that uses
a continuous function to compute the output. The reason for choosing the
sigmoid function is that its derivative is easily calculated see Equation 3.14.

∂E

∂wi

= o(1− o)(−xi) (3.14)

o is the output function seen in Figure 3.12, note that the derivative is used
in the error term δk in Equation 3.16.

Now we have looked at how to train single perceptrons, but a single per-
ceptron can only represent linear decision surfaces. Multi-layered neural



44 Models for Reasoning and Machine Learning

Figure 3.12: A figure of the sigmoid unit

networks constructed out of many perceptrons or sigmoid units are capable
of expressing highly non-linear decisions[8]. We will now introduce a way to
train such multi-layered networks.

3.3.5 The Backpropagation Algorithm

The Backpropagation Net was first introduced by G.E. Hinton, E. Rumelhart,
and R.J. Williams in 1986 [4].

We intend to use a feedforward neural network as our targeting mechanism
for the robot. A feedforward network is a network that is fed an input at
the top level and then propagates it forward through the network. We have
chosen to look at feedforward networks as they are widely utilized for pattern
recognition, dynamic modelling, data mining, function approximation, and
forecasting [14][7]. In order to be able to train the feedforward network we
examine the backpropagation algorithm.

The backpropagation algorithm is the most common way to learn weights
for a multi-layered network, and also a very powerful one [4]. The back-
propagation algorithm uses gradient descent from Section 3.3.3 to minimize
the squared error. Because we are looking at a multi-layered network with
multiple output units, we redefine the error E to sum over all the outputs,
in contrary to the single output from before:

E(~w) =
1

2

∑

d∈D

∑

k∈outputs

(tkd − okd)
2 (3.15)

where outputs is the set of outputs in the network, tkd is the target value
associated with the kth output unit and training example d, and okd is the
output value associated with the kth output unit and training example d.
The backpropagation algorithm is faced with the task of searching every
possible weight value for each unit in the network.



3.3 Neural Networks 45

One of the large differences between the single-layered network and the multi-
layered network, is that in contrast to having a single parabolic plane with
one global minimum, the multi-layered network consists of many dimensional
planes, which can each create a local minimum. This means that in the
case of a multi-layered network, the gradient descent training rule described
in Section 3.3.3 is not guaranteed to converge to the global minimum, but
might fall into some local minimum. In Section 3.3.6 we discuss this a bit fur-
ther and we present a modification to the backpropagation algorithm called
momentum.

Figure 3.13: A visualization of the backpropagation algorithm. Note how
every unit in the input layer affects the hidden layer, which in turn affects
the output layer. The dashed lines shows how the weight updating propagates
up through the network.

Observe that the backpropagation algorithm, see Figure 3.3.5, begins by
constructing a feedforward network with a given number of hidden units and
output units, and then it initializes all the weights to small random values.
Now that it has a fixed network structure to work with, the main loop of the
algorithm runs for a certain amount of time. This time can be any number
set by the one running the algorithm, or it could be based on whether the
algorithm converges to some value.

Inside the main loop we have the inner loop that iterates over all the training
examples one by one, updating the weights according to the target vector ~t
by calculating the output given the input vector ~x. The inner loop has three
parts to calculate before a fourth and final step resolves the new weights
and updates each weight accordingly. The first calculation step is to find
the values of the output units, then we backpropagate the error through



46 Models for Reasoning and Machine Learning

backpropagationAlgorithm(training examples, η, nin, nout, nhidden)
traning examples is the set of training examples, where each
example is a pair of vectors (~x,~t), where ~x is the input values and
~t is the target values for the given example. η is the learning rate,
meaning how fast changes to the weights will propagate through the
network. The learning rate is usually set to some small number, e.g.
0.01, because this prevents an erroneous training example to influence
the weights too much. nin, nout, and nhidden are the number of input
units, the number of output units, and the number of hidden units,
respectively.

• Create a feedforward network with nin inputs, nout output and nhidden

hidden units.

• Randomly choose the initial small-valued weights.

• While the termination condition is not yet met, for each training pair
< ~x,~t > in training examples do

1. Apply the inputs ~x to the network and calculate the output for
every neuron from the input layer, through the hidden layer(s), to
the output layer

2. Propagate the errors backward through the network by first cal-
culating the error term δk for each output unit

δk ← ok(1− ok)(tk − ok) (3.16)

where ok is the output of the kth output unit.

3. For each hidden unit in the network calculate the error term δh

δh ← oh(1− oh)
∑

k∈outputs

wkhδk

where oh is the output of the hth hidden unit, and wkh corresponds
to the weight from unith to unitk

4. Now update each weight in the network

wji ← wji + ∆wji

where wji is the weight from uniti to unitj, and

∆wji = ηδjxji (3.17)

Figure 3.14: The backpropagation algorithm. The figure is taken from Ma-
chine Learning [8] page 98



3.3 Neural Networks 47

the network by starting with the lowest level of the network, calculating the
error corresponding to the output units. By propagating up to the next
level, and calculating the error corresponding to the hidden units, there is
enough information to finally calculate the new weights. Figure 3.13 shows
an overview of backpropagation algorithm.

3.3.6 Convergence and Momentum

As mentioned in the previous section, backpropagation in multi-layered net-
works have the unfortunate complication that it is no longer guaranteed to
converge to the global minimum, see Figure 3.15.

Figure 3.15: The backpropagation ends up in a local minimum

One way to try and overcome this in the backpropagation algorithm is to
add momentum to the weight update rule in Equation 3.17. The weight
update rule is changed to depend partially on the previous iteration, so the
nth iteration is calculated by:

∆wji(n) = ηdjxji + α∆wji(n− 1) (3.18)

where ∆wji(n) is the weight update in the nth iteration, and α denotes the
momentum which should be a value in the interval [0; 1[.

The effect of the added momentum is to accelerate down steep slopes as
seen in Figure 3.16. This has a tendency to keep the gradient descent going
through local minima and ending up in the global minimum.



48 Models for Reasoning and Machine Learning

Figure 3.16: The modified backpropagation ends in a global minimum

3.4 Genetic Algorithms

This section is based on the ninth chapter on Genetic algorithms and Ge-
netic programming from Machine Learning [8] and Introduction to Genetic
Algorithms [11].

Evolutionary computing was introduced in the 1960s by Rechenberg in his
work Evolution Strategies. Genetic algorithms were first described by John
Holland and his students in Adaption in Natural and Artificial Systems. This
research went public in 1975. In 1992 ideas from genetic algorithms were
transformed into genetic programming by John Koza.[11]

First of all, evolution is known from biology as natures way of making in-
dividuals adapt to an environment. In terms of Robocode, the environment
will change every time a robot is faced with a new opponent. This means
that a robot needs to be able to adapt to its environment, and genetic algo-
rithms allow robots to do this. A solution found by a genetic algorithm is
not necessarily the best possible solution, but it will always be better than
the ones found previously. The found solution has a fitness value that is
better than the assigned fitness threshold. Fitness and fitness threshold will
be explained later in Section 3.4.1.

Genetic algorithms offer a way to search for a solution in an environment
where it is not obvious how different factors effect the solution. As a result of
how genetic algorithms are implemented they are easy to parallelize, which
again means that increasing CPU power would make the algorithms more
efficient. Genetic algorithms have been applied to solving problems like:

• Data analysis and designing neural networks



3.4 Genetic Algorithms 49

• Robot trajectory

• Strategy planning

• Evolving LISP programs (genetic programming)

• TSP and sequence scheduling

• Functions for creating images

In other words, genetic algorithms provide a general strategy for finding
optimized solutions to a problem.

3.4.1 The General Algorithm

Finding the solution to a problem is often a question of finding the minimum
or maximum value of a function. The co-domain of the function is called the
search space or pool of hypotheses. The search space of genetic algorithms is
a pool of all possible sets of individuals. A population is a subset of the search
space. These individuals within the population are string representations of
the domain. The strings could contain any possible combination of characters
that could describe this domain.

The best example of such a string must be DNA. DNA is a string of the letters
G, T, A, and C. These four letters together describe every living organism.
To keep it simple, the strings discussed throughout this section will be binary
strings.

Like in the real world, evolution is performed by a genetic algorithm based on
the principle that is survival of the fittest. Survival of the fittest is ensured
by the fitness function described in Section 3.4.2. The evolution is driven
by the genetic operators crossover and mutation described in Section 3.4.3.
The crossover operators are used for recombining the individuals inside a
population. Small changes are added to the individuals with the mutation
operator.

There exists different implementations of genetic algorithms, but they all
have more or less the same structure. This basic structure is described below.
A genetic algorithm usually takes the following input:

Fitness is a function. This function is used for ranking the individuals in a
population.



50 Models for Reasoning and Machine Learning

Fitness threshold The algorithm terminates when an individual in a given
population gets a fitness value that is greater than the Fitness threshold.
A possible problem could be that the fitness threshold is never reached,
thereby creating an infinite loop. If the fitness values does not seem
to change much in a number of generations one could argue that we
have reached a maximum. By keeping track of this change, such a loop
could be avoided.

p is the size of the population that the algorithm is going to maintain during
its lifetime. The size of a population equals the number of individuals
contained in it.

r is the fraction of individuals that are modified using crossover in every
iteration of the main loop. How the size of r influences the behavior of
the algorithm is described in 3.4.3.

m is a rate that tells how often mutations should be added to the individuals
that go into the next population. How the size of m influences the
behavior of the algorithm is described in Section 3.4.3.

Now that we know what parameters the algorithm depends on, we can start
describing the algorithm itself. Before the algorithm enters its main loop
for the first time, a random population of individuals is generated. The
fitness value for each of these individual is calculated. After these steps the
algorithm enters the main loop. The main loop runs until one individual gets
a Fitness that is greater then the Fitness threshold variable. The main loop
is the while statement in Figure 3.17. The following operations are repeated
at every run of the main loop.

1. A fitness value of every individual in the population is calculated.

2. Once the fitness values has been calculated, individuals are selected
according to these values with the selection function. Equation 3.19 is
such a selection function. This is described in Section 3.4.2.

3. Once the individuals for the next population have been selected, crossover
operations are applied to them according to r.

4. Finally the mutation is applied to the new individuals with respect to
m.

The following expression is used for calculating the probability that an in-
dividual is going to be a part of the next population. The probability is



3.4 Genetic Algorithms 51

GA(Fitness,Fitness threshold,p,r,m)

• Initialize population : P ← Generate p hypotheses at random.

• For each h in P , compute Fitness(h).

• While(max Fitness(h) < Fitness threshold)

1. Select: Probabilistically select (1 − r)p members of P to add to
Ps. The probability Pr(hi) of selecting hypothesis hi from P is
given by Equation 3.19.

2. Crossover: Probabilistically select r·p
2

pairs of hypotheses from P ,
according to Equation 3.19. For each pair (h1, h2), produce two
offspring by applying the Crossover operator. Add all offspring to
Ps.

3. Mutate: Choose m percent of the members of Ps with uniform
probability. For each, invert on randomly selected bit in its rep-
resentation.

4. Update P ← Ps

5. For each h in P , compute Fitness(h).

• Return the hypothesis with the highest fitness from P .

Figure 3.17: The general genetic algorithm. The figure is taken from Machine
Learning [8] page 251

calculated as the fitness of an individual divided by the sum of the fitness
values of all individuals.

Pr(hi) =
Fitness(hi)∑p

j=1 Fitness(hj)
(3.19)

The function above is a generalized expression that covers the most frequently
used selection functions. A more detailed description of various selection
functions and their drawbacks and advantages can be found in Section 3.4.4.
The generalized function states that a high fitness value means that the
individual has a high probability of getting into the next population in some
form. Now the general algorithm has been described, but the functions it
utilizes still remain. The first function to be described is the fitness function.



52 Models for Reasoning and Machine Learning

3.4.2 The Fitness Function

The fitness function is used for selecting the individuals that are going to
become parents of the next population. The fitness function calculates a
value for every individual in a population. The individuals with the highest
values are typically the ones that become parents of the next population. In
other words, the fitness function is a tool for ranking the individuals in a
population.

Exactly how the fitness function calculates the fitness of an individual de-
pends on the domain. If the domain is a game of chess, the value could
be the number of moves needed to win the game. If the domain is a game
of Robocode, the value could be the score gained during the game or the
number of battles won.

3.4.3 Genetic Operators

The copying of bits is done by idealized versions of the operators that are
used in genetics by mother nature. The most commonly used operators are
mutations and crossovers.

Crossovers and mutations are made for different reasons. The idea of per-
forming the crossovers is to create new individuals based on properties from
the already existing individuals, by combining properties from two individu-
als, and thereby hopefully enhancing the fitness value. Mutations are made
to prevent a search ending up in a local extreme of a function. Evolution
speed in a genetic algorithm is controlled by the crossover and mutation rate.
This rate is a probability. If the crossover rate is 1 then all individuals in
the next population would be the result of a crossover. If the rate is 0 all
individuals would just be passed onto the next population without changes.
The crossover rate is the parameter r given to the algorithm. A mutation
rate of 1 means that mutations are applied to all individuals in a population.

Crossover

Performing a crossover means that strings exchange substrings among each
other. The crossover operator uses a crossover mask to perform the crossover
between the parents strings. The difference between the crossover operators
is basically how the bits gets selected by the crossover mask.



3.4 Genetic Algorithms 53

Single-point Crossover

This is the simplest way to perform a crossover between two strings. A
random number n is picked, which is greater than zero and smaller than the
length of the parent string. This number is used for dividing the crossover
mask into two parts. The first part is marked using 1s and the last with
0s. The string 1111100000, where n is 5, will be used as crossover mask in
the following example. The underlined parts form the first offspring and the
overlined parts form the second offspring.

Crossover 1111100000

Parent1 11001 10011

Offspring1 11001 10001

Crossover 1111100000

Parent2 00011 10001

Offspring2 00011 10011

Two-point Crossover

This operator works by randomly choosing two number n0 and n1. These
two numbers are used for making the crossover mask. n0 and n1 are both
shorter than the parent string and n0 6= n1, or else the two-point crossover
will become a single point crossover. n0 and n1 divides the crossover mask
into 3 parts: the characters up to n0, the characters between n0 and n1, and
the characters after n1. The string 1110001111, where n0 is 3 and n1 is 6, is
used in the following example. The underlined parts form the first offspring
and the overlined parts form the second offspring.

Crossover 111 000 1111

Parent1 110 011 1001

Offspring1 110 111 1001

Crossover 111 000 1111

Parent2 000 111 0111

Offspring2 000 011 0111

Uniform Crossover

For every bit in the parent string, a random decision is made whether the bit
should be part of the crossover mask or not. The string 1100010001, where
the bits at position 1,2,6, and 10 were chosen to be in the crossover mask,
will be used in the following example. The underlined parts form the first
offspring and the overlined parts form the second offspring.



54 Models for Reasoning and Machine Learning

Crossover 1100010001

Parent1 1100111001

Offspring1 1101110111

Crossover 1100010001

Parent2 0001110111

Offspring2 0000111001

Elitism

The idea of Elitism is that every population may contain good individuals
which should not be lost, due to the use of the genetic operators. Thus a
small fraction (1% to 5%) of a population is passed on to the next generation
without applying crossover.

Mutation

As mentioned earlier, mutations are performed to prevent that the search
ends up in a local extreme.

The mutation operator is used for making small changes to the new individ-
ual. A random position in the parent string is selected and then inverted.

0000001111 −→ 0001001111

3.4.4 Selection and Ranking Individuals Functions

The learning method used by genetic algorithms is different from the one
used by backpropagation, which is based on gradient descent. The gradient
descent moves smoothly from one hypothesis to the next, meaning that the
hypothesis n is very similar to hypothesis n + 1.

Genetic algorithms performs a randomized beam search that ends up in find-
ing an individual who’s fitness value is greater than the fitness threshold for
the algorithm. Because of this random behavior, genetic algorithms are not
likely to end up in a local extreme. A genetic algorithm produces hypothe-
ses that vary in similarity because of the genetic operators, meaning that
hypothesis n is very dissimilar from hypothesis n + 1. The algorithm needs
a guide that helps it find the right individual, a naive way to do this is by
using the roulette wheel selection described below.

Roulette Wheel Selection The idea behind the Roulette Wheel Selection is
to make a roulette wheel, where the size of the fields represent the



3.4 Genetic Algorithms 55

probability that an individual gets selected. Such a wheel can be seen
in Figure 3.18(a).

• The sum of all fitness values is found

• The probability of every fitness value is found

Fitness value 2200 1800 1200 950 400 100
Selection probability 0.394 0.323 0.215 0.17 0.0718 0.017

The fitness values in this example are scores of different robots (or
individuals). The wheel can be found in Figure 3.18(a).

When selecting an individual, the wheel is spun. The greater the piece
of the wheel an individual covers, the greater the chance this individual
has of being picked.

(a) The wheel based on the probabil-
ities of the individuals.

(b) The wheel after rank-
ing has been performed.

Figure 3.18:

When using wheel selection a problem is known to occur when some indi-
viduals are more fit than the rest of the population. These individuals will
quickly become a large fraction of the population. This will slow down the
search process because of the reduced heterogeneity in the population. To
prevent this problem, people have come up with different ways of selecting
individuals of the population, one of which is the rank selection.

Rank Selection This method is used for preventing an individual with a
high fitness from dominating the next population. This ranking of the
individuals guarantees a more uniform selection of individuals, see Fig-
ure 3.18(b). A more uniform selection guarantees a greater spreading
among the individuals, which again results in a better performing al-
gorithm, in the form of reducing the chance of the algorithm getting
stuck in a local extreme.



56 Models for Reasoning and Machine Learning

1. First the individuals are ranked according to their fitness.

2. Next the individuals are given a value from 1 to n, where n is the
size of the population.

Fitness value 2200 1800 1200 950 400 100
Ranking values 6 5 4 3 2 1
Selection probability 0.285 0.238 0.190 0.142 0.095 0.04

With ranking selection the genetic algorithm will provide a robust way to
drive the evolution forward.

Now that we have covered the Robocode game and several agent architec-
tures and machine learning technologies, it is time to start designing our
robot. The knowledge of what different machine learning technologies can
provide, enables us to design a robust, yet flexible and adaptive robot design.
The functionalities of each component of our robot must be considered and
defined. Before doing this we will briefly establish a goal for the project in
the following chapter.



4Project Goals

After familiarizing ourselves with Robocode we have learned the following:

Execution time. The processing time a robot has per tick is limited, and
therefore we have to limit our computations

Geometry. Terms like heading, bearing, velocity, etc. have been analyzed
and will come in handy when designing and implementing a robot

Team communication. The ability to make a robot communicate with its
teammates makes a collection of several robots capable of cooperating
in order to pursue a common goal, and hopefully achieve a synergy
effect

Having analyzed different agent architectures, the hybrid architecture was
found most suitable for this project due to its way of maintaining its reactivity
while still maintaining a world model, which makes the robots capable of
sharing information about the world in which they operate. A world model
enables us to save information about the movement of the enemies. The
movement of an enemy robot is likely to follow a pattern of some kind, which
is what neural networks has proven to recognize quite well, hence a neural
network would be suitable for use in the aiming system.

Several types of machine learning technologies have been examined in or-
der to reveal their strengths and weaknesses, giving us a basis for selecting
what technologies to use for which tasks. The genetic algorithm was found
to be well suited for optimizing weighting of parameters and therefore quite
suitable for implementing the robots movement subsystem. Furthermore, a
Bayesian network was chosen for target selection as each situation in which



58 Project Goals

target must be selected must be compared to previously experienced situa-
tions.

Different types of team coordination have been discussed. Because of the
world in which our robots are going to operate is quite dynamic, we chose
to make use of a decentralized coordination, because if a teammate gets
killed the other robots will still be able to continue just as before. Another
reason for choosing the decentralized coordination model is the CPU time
restriction. It could be problematic if a single robot should calculate actions
for the whole team within the modestly sized time slice it is assigned.

The overall goal of the project is to develop an au-
tonomous robot for Robocode, which is able to learn
from previous experiences as well as adapt to the envi-
ronment and different opponents.
The robot developed should be able to operate in a team,
making decisions based upon information gathered by
the whole team, without having a central coordination
mechanism.

In Part II of this project we will design the various components of our robot,
examining the subsystems of the robot and how these should interact. We
will also discuss and design the incorporation of several machine learning
technologies. In Part III we will explain the implementation of our robot
and afterwards present test results and discuss whether or not our goals have
been fulfilled. Furthermore, tests for finding the best configurations for the
different components will be carried out.



II
Design





5Component
Design

This chapter describes the design of the code of the robot. Here the different
modules and their tasks will be explained, and how the machine learning
should be put into these modules. Furthermore this chapter will describe
how this module design is mapped into a Java framework.

5.1 Module Design

This section describes the design of the modules used for the implementation
of the whole team of robots. Figure 5.1 shows an outline of the whole design,
which will be elaborated on in the sections below. These sections explain
the basic behavior of each module in different situations, as well as which
technologies will be used for implementing them.

Our model has three overall layers, namely General Strategy, Strategic Mod-
ules, and Interaction Modules. All of these layers are represented in Fig-
ure 5.1.

• The General Strategy layer is represented as two branches, Offensive
and Defensive.

• The Strategic Modules layer is represented as three rows, Retreat, At-
tack, and Acquire Target.



62 Component Design

Figure 5.1: This figure shows an outline of the whole module design

• The Interaction Modules layer is represented as the four columns la-
belled Radar, Gun, Move, and Team.

5.1.1 General Strategy Layer

This layer is in charge of choosing an offensive or defensive strategy as the
general strategy. The module asks each of the Strategic modules for their
opinion on whether passing control to them will be profitable or not. These
opinions are expressed as numerical values that determine which module
to choose. How this value is calculated is explained in Section 5.1.3. When
each of the Strategic modules has returned a value, they are compared to each
other and when the optimal solution is found, the control of the robot is given
to the module that offers this solution. For this task a Bayesian network is
chosen in order to make an informed decision based on the opinions returned
by the Strategic modules.



5.1 Module Design 63

5.1.2 Strategic Modules Layer

This layer contains modules that are in charge of the tactical strategies.
They are the ones that take care of the communication with the Interaction
modules. As mentioned earlier, the Strategic modules layer contacts each of
the Interaction modules which in turn give indications of how their current
situation looks. These indications reflect whether each of the components is
in a potentially good or bad situation. Each of these indications are summed
and returned to the general strategy module as described above. When a
strategic module is chosen, it will be in charge of by turn giving the control
to each interaction module.

Acquire target

When the robot is in no immediate danger and it has no target to chase, this
module is activated. When activated the robot attempts to find an enemy
robot to attack.

Attack

When the robot is in no immediate danger and it has found a target to attack
or if the possible gain of attacking an enemy is greater than the possible loss
of energy, this module is activated. This means that the enemy robot found
by the Acquire target module is pursued and attacked.

Retreat

If the robot is in immediate danger and there is no better solution than
fleeing, this module is activated. When activated the robot attempts to find
a route away from the current danger.

5.1.3 Interaction Modules Layer

This layer contains modules that are in charge of substrategies. A robot con-
sists of a radar, a gun, and a vehicle. Therefore a module controlling each of
these components is constructed. Furthermore, because a team is being im-
plemented, a module handling the team communication is also constructed.
When the Strategic module by turn gives control of the robot to each of these
modules, they find an action to execute in the given situation.



64 Component Design

Radar Module

Determining a radar scanning strategy is important in order to find the
position of enemy robots. For this task either a hand-coded or an adaptive
strategy could be chosen. There are both pros and cons for choosing either
strategy. An advantage with the adaptive approach is that the robot in
time will learn the movement patterns of the enemy robots and therefore
will be able to predict their whereabouts, causing the robot to be able to
scan for enemies more precisely than a hand-coded strategy would. However
maintaining such an algorithm is rather expensive, and as the robot has
a limited amount of time for choosing a move, this could pose a problem.
Because the radar has limited functionality, and a predefined strategy is easy
to make, a hand-coded model was chosen for this task.

Acquire target
A simple manner for acquiring a target would be to just spin the radar until
an enemy robot is eventually scanned. If an enemy is within a radius of 1200
pixels it will be found within eight ticks, which is the time it takes for the
radar to spin a full 360◦ rotation.

Attack
When in attack mode, a possible strategy for the radar is to let the radar
follow the enemy that is to be attacked. This way the robot is always aware
of where the enemy is. However this poses a problem if another enemy robot
has sneaked up behind the robot, because this is not registered by the radar.
To solve this problem, the radar is programmed to spin every now and then
in order to find out if there are other enemies in the vicinity of the robot.
However, if all of the robots are in attack mode, it would be profitable to
make them communicate with each other so that they do not all scan the
battlefield at the same time. This will help us maintaining a world model
that is as up-to-date as possible.

Retreat
When fleeing from an enemy a sensible strategy could be to keep tracking
the enemy we are fleeing from. This way we are always aware of where the
enemy is, and we know if the enemy has changed direction or stopped the
pursue. This however poses the same problem as when attacking, where
another enemy could sneak up behind us and attack. Therefore the behavior
of the radar should be the same as when attacking, namely to spin the radar
once in a while.



5.1 Module Design 65

Gun module

It is essential that the robot’s gun is able to adapt to the situation that
it is in. Both a hand-coded and an adaptive algorithm could be chosen
for implementing the gun module. It is however hard to use a hand-coded
approach to implement an algorithm that is able to predict how the enemy
will move in the future. Instead we rely on a neural network to make this
prediction for us.

Acquire target
This part of the module is hand-coded. When acquiring a target the radar
simply spins while searching for enemies. We have made the radar and the
gun spin together because, as described in Section 1.5, if the gun spins at
the same time as the radar and in the same direction, the radar will be able
to scan a full rotation in six ticks. Had the gun not been moving, the radar
would take eight ticks to spin 360◦. Since we want the radar to spin as fast as
possible, we have chosen to spin both the radar and the gun simultaneously
when acquiring a target.

Attack
When attacking an enemy the gun should fire at the enemy. The strategy of
the gun is to point towards the enemy at all times and fire when it is able
to hit that enemy. A neural network handles this task because it is able to
recognize the movement patterns of the enemy, and will be more likely to hit
the enemy than a hand-coded algorithm would.

Retreat
Even when fleeing from an enemy the robot should still fire at this enemy,
hoping to drain some energy from it or maybe even kill it. The gun is
controlled by a neural network, just as before.

Move module

Moving around the battlefield is essential in order to survive in a game of
Robocode. If a robot is not constantly moving, it will be easy for enemy
robots to hit it. Driving in a straight line will also be easy to predict for even
very simple robots. In order to keep a robot as unpredictable as possible,
some kind of randomization must be used. However, other robots using
intelligent firing algorithms will find even this randomization easy to predict.
In order to make the driving route as unpredictable as possible, part of
this module is implemented using a genetic algorithm produces movement
patterns optimized for avoiding bullets and walls.



66 Component Design

Acquire target
When looking for a potential target, it is a good strategy to keep moving
around the battlefield and scan for enemies. But the question is where the
robot should drive to. There are two possibilities: If an enemy robot was
scanned a while ago, it is quite possible that it is not far away from our
current position and we should just start driving to where we spotted this
enemy. If no robots were ever scanned or no robots were present where we
have previously seen some, our robot should just explore the battlefield in a
random direction which is unreachable by the radar at the moment.

Attack
In order to avoid getting hit, a genetic algorithm was chosen for the task
of attacking. A genetic algorithm enables the vehicle to adjust its route in
order to optimize its movement strategy according to the enemy’s strategy.
In order to make the movement pattern of the robot even more unpredictable
it is possible to let the robot choose between multiple movement patterns.
The robot will then at random choose which movement pattern to use.

Retreat
When fleeing from an enemy, it is essential that the robot does not flee in
a straight line, which would make the robot an easy target. Therefore the
same strategy as when attacking is chosen.

Team module

Because we are implementing a team of robots, there must be some kind of
a communication between the robots. Of course it is possible to implement
a team without any kind of communication between the team members, but
this will not be very effective. It is better to make a decision based on facts
obtained by all robots rather than facts obtained by only one robot, because
gathering information from all robots provides a more detailed and up-to-
date world model. The Team module maintains the world model so when a
robot makes changes to its own world model the change is broadcast to the
other teammates in order for them to have the most up-to-date world model.

The world model contains the following information:

• The position, heading, velocity, energy, state and possible target of
teammates

• The position, heading, velocity and energy of enemies from the last
scan



5.2 Framework 67

• The last 100 recorded positions of enemies

Acquire target
When acquiring a target, the robot “writes” to the world model that it is
currently acquiring a target. Furthermore, when an enemy is scanned it is
also written to the world model.

Because multiple enemies could be scanned in a single rotation of the radar
and a teammate might meanwhile have scanned additional robots, a choice
must be made of which target to select. This decision could be based on
several facts, for example a robot could choose the enemy with the lowest
amount of energy, or it could choose one that the teammates are attacking,
or one who is attacking a teammate etc. The responsibility of choosing the
right target lies with a Bayesian network that makes its decision based on
information acquired from the robots own radar and the world model.

Attack
When in attack mode the robot writes to the world model that it is currently
in attack mode and also which robot it is attacking. This way the other robots
are able to take this information into consideration when choosing a target
to attack.

Retreat
When in retreat mode a robot will write to the world that it is currently in
retreat mode.

5.2 Framework

As described in Section 5.1, the design is layered and split into modules. This
design can more or less be mapped directly onto a class diagram of the Java
classes used for the implementation of the robots. Figure 5.2 shows how the
classes interact with each other. The main class is the OurRobot class which
inherits from TeamRobot as described in Section 1.6. The OurRobot class is
responsible for communicating with the strategy classes. The class contains
four methods, one for deciding what to do and three for giving control to
each of the strategy classes.

• decideWhatToDo()

• doAttack()

• doAcquire()



68 Component Design

Figure 5.2: This figure shows the overall framework of the code



5.2 Framework 69

• doRetreat()

All three strategy classes have identical interfaces, as all of them should
contain exactly the same methods.

Another abstract class is defined for the interaction classes which must be
extended by each module. The following methods is contained within each
module:

• getAttackRating()

• getAcquireRating()

• getRetreatRating()

• giveAttackControl()

• giveAcquireControl()

• giveRetreatControl()

The methods getAttackRating, getAcquireRating, and getRetreatRating

are used for getting an estimate of how profitable it will be to hand over con-
trol to the attack, acquire, or retreat strategy modules, respectively. This
rating is an integer which is weighted as shown in Figure 5.1. The methods
giveAttackControl, giveAcquireControl, and giveRetreatControl are
used for giving the aforementioned strategy modules control of the robot for
one tick.

Because the OurRobot class extends the TeamRobot class the robot will be
able to perform non-blocking calls in order to let the robot perform multiple
actions in a single tick. When an interaction module is controlling the robot,
non-blocking calls are used–for example setFire(2). When a strategy is
chosen, all interaction modules make their move using non-blocking calls,
and when every module has made their move, the OurRobot object calls the
execute() method and all the moves are executed simultaneously.

In Robocode it is preferred that every robot is put into a package in order
for the Robocode environment to distinguish which classes belong to which
robot. Therefore a package robopack is defined that contains all the robot
code.

Now we have divided the robot design into modules, each with a specific task.
By doing this, each module in the robot will have a well defined assignment.
The following chapter will discuss how the various types of machine learning
is applied to the tasks that our robot must perform.





6Machine
Learning Design

This chapter will provide you with descriptions of how the parts of our robot
that utilize machine learning techniques are designed, as well as the thoughts
put into these designs.

6.1 Target Selection

As mentioned in Section 5.1.3, a Bayesian network is chosen for the imple-
mentation of the target selection. Implementation of the Bayesian network
used for target selection will be explained in Section 7.1. A Bayesian net-
work has several advantages in the context of target selection. First of all,
a Bayesian network is a compact representation of the joint probability, in
which it is easy to look up probabilities based on evidence. Secondly, it is
easy to model a Bayesian network that handles target selection. This is done
by constructing variables for each input that influences the target selection.
Each of these states must be mutually exclusive and complete, see Definition
7 in Section 3.1. By giving evidence to these variables the Bayesian network
will come up with a rating r, indicating how profitable it will be to choose
some target. This rating is defined to be

r = probabilitykill (6.1)

This way, the rate for each known enemy in the world model is calculated,
and the one with the highest rate is chosen as the target.



72 Machine Learning Design

6.1.1 Variables

Now the question is which input data should be used for input variables. One
could argue that every single known piece of data should be modelled as a
variable in order to get the best result. This, however, could pose a problem,
as the probability tables would be rather comprehensive and demanding as
far as calculation goes. Therefore a choice must be made, choosing the most
important inputs to be variables. All information about the enemies are
available from the world model, which holds information collected by the
team. Some of the information available is chosen to be left out of the
Bayesian network, because it is not that important when choosing a target.
Some of the data left out is the velocity and heading of the robots, as the
gain of including this knowledge is approximated to be less than the overhead
of having to do the extra calculations. The following data has been chosen
to be enough to base a decision upon.

The energy of our robot. It is important to take into account how much
energy the robot has. This could prevent a robot from choosing to
target an enemy with significant more energy than it has itself.

The energy of the enemy. As mentioned above, it is important to know
the difference between the amount of energy the enemy has and the
amount that our robot has. The reason for this is that when choosing
between two targets, it could be more profitable to choose the one with
lesser energy if our own energy is low.

Distance to enemy. When choosing a target, it is important to take into
account the distance to the enemy. This could prevent a robot from
choosing a target that is far away when there is an equally good target
that is closer to our robot. This will also prevent the robot from putting
itself in danger by driving across the entire battlefield in order to attack
an enemy.

The enemy’s distance to its nearest teammate. If our robot is by itself and
is choosing between two targets, it could be profitable to choose an
enemy that is also by itself. Therefore it is important to take into
consideration how far the enemy is from one of its own teammates.

How many teammates have chosen a given target. Sometimes it could be
a good idea for teammates to attack the same enemy. However, it
could also be a disadvantage if all the robots choose to attack the same
target at the same time. Therefore it is an advantage to know how
many teammates that have already chosen a certain enemy as a target.



6.1 Target Selection 73

Figure 6.1: The design of the Bayesian network

Win or lose. When a robot dies it must be specified whether or not we win
using the current configuration.

Now the question is how to decide if the chosen target was a good or bad
choice in order to update the Bayesian network. How the network is updated
is elaborated on later in this section. If the chosen target dies before our
robot, then the choice was probably a good one. Similarly, if our robot dies
before the target, then the choice must have been a bad one.

The design of the Bayesian network is outlined in Figure 6.1. It consists
of ten variables, and every time the Bayesian network is used there will be
evidence on eight of them. In order to get the rating r mentioned earlier,
one only needs to read the Target variable. In the following the symbols
T, FT, D, DE,E, OE, F are short for the variables: Target, Friends targets,
Distance, Distance to nearest enemy, Enemy energy, Our energy, Friendn.

Definition 11 The probability of winning is P (T = win|FT,D,DE, E, OE)

The variable FT (Friends targets) is defined as

Definition 12 Friends’ target is P (FT |F1, F2, F3, F4)

6.1.2 States

One of the problems with Bayesian networks is that there must be a state for
every possible input. This, however, is not possible. For example, distance is



74 Machine Learning Design

measured using a double and a state for every number must be constructed.
This would make the number of states huge and thereby the probability table
would be enormous. The solution to this problem is to split the input range
into intervals and construct a state for each of these ranges. This is also
known as discretization of continuous variables.

But how do we create these ranges in such a way that the network will still
be able to make good decisions. For the energy variables, reasonable ranges
could be:

• 0-20

• 21-50

• 51-120

• 121-∞

This way a robot will be able distinguish between “normal” robots having
one of three different levels of energy. Furthermore it will be able to see if
one of the enemies in sight is the leader, since it will have an energy amount
of more than 120. This is of course only true at the start of a game.

For the distance variables, reasonable ranges could be

• 0-100

• 101-300

• 301-700

• 701-1200

• 1201-∞

This will make the robots able to distinguish whether other robots are very
close, close, just barely within radar range and outside radar range. It is
important to construct one of the ranges with respect to the radar range,
because it is a good idea to choose a target that the robot is able to scan.

The only state left that needs specifying is the Friendn variable. This must
contain the states, in which a teammate can be. Intuitively, a teammate can
be in the following states:

• No target



6.2 Overall Strategy 75

• Dead

• Same target

• Another target

From this information the robot will be able to determine whether the target
it has selected is the target of a friend or not.

6.1.3 Updating the Network

The only thing that needs to be done now, is to update the Bayesian network.
This is done on-line when running the Robocode program. The output vari-
able is Target , which specifies the probability of the robot winning. When
choosing a target, information about the enemy and the state of the robot
itself is saved, and when either the enemy or the robot dies, the Bayesian net-
work is updated accordingly. The approach used when updating the network
is fractional updating, see Section 3.2.2. So every time a positive example is
experienced, the probability table for the given configuration is incremented.

6.2 Overall Strategy

For the task of selecting an overall strategy, another Bayesian network was
chosen. The network, which can be seen in Figure 6.2, consists of four vari-
ables. The output variable is called overall strategy and has three states,
acquire targetout, retreatout, and attackout. There are three input vari-
ables as well, Acquire target, Retreat, and Attack. All of these have two
states, rating and 1-rating.

Figure 6.2: Design of the Bayesian network.

The probability of e.g. retreat is the sum of the return values of the
getRetreatRating() method on each of the four interaction modules. To



76 Machine Learning Design

make sure they map onto [0; 1], the Sigmoid function is used as seen in
Equation 6.2

P (retreat = rating) = sigmoid(retreat.getRating()) (6.2)

Another question is how to update the network. This should be done by
saving all decisions made by the network during the round and afterwards
updating the network positively, using fractional updating, if we win, other-
wise negatively.

The following abbreviations are used in the section below: OS is Overall

strategy, AT is Attack, R is Retreat and AQ is Acquire target. 1-r is
short for 1-rating and r for rating

When a positive result has been found all the decisions made should be
updated in the following way, e.g. for retreatout P (OS = retreatout|AT =
1-r, R = r, AQ = 1-r) = (n1 + 1, n2, n3) where n1 is the values from the last
update.

A negative result should be updated as P (OS = retreatout|AT = 1-r, R =
r, AQ = 1-r) = (n1, n2 + 1

2
, n3 + 1

2
)

P (OS|AT = r, R = r, AQ = r), P (OS|AT = r, R = r, AQ = 1-r),
P (OS|AT = r,R = 1-r, AQ = r), P (OS|AT = 1-r, R = r, AQ = r) and
P (OS|AT = 1-r, R = 1-r, AQ = 1-r) should all be set to (1

3
, 1

3
, 1

3
)

6.3 Aiming System

In order to design an aiming support system for the robot, we took a look
at the most common techniques used in other robot designs. This seemed
to be a difficult task, as many of the robot designs claimed it was difficult
to implement a well working support system for aiming. Many suggested a
neural network for this part of the design.

This preliminary research ended with us focusing on neural networks, and
how to utilize a neural network for aiming. As discussed in Section 3.3.1,
neural networks are based on the human brain’s ability to quickly recognize
patterns and translate these into actions. Just consider how fast a child
learns to calculate the trajectory of a thrown ball, and how to compensate
for various factors like wind etc. The primary reason for choosing a neural
network, was to capture this ability to create an adaptive guiding system for
aiming that was able to recognize the movement patterns of the opponent
robots and thereby predict in which direction to shoot.



6.3 Aiming System 77

Figure 6.3: The intuition behind the maximum span of the correction angle.

6.3.1 Input and Output Representation

To decide what the input to the neural network should be, the first thing
to do was to look at what the output should be. This way, it could be
determined what influenced the output, thus making it possible to construct
a suitable network representation.

Output

The target selection, described in Section 6.1, is done by a Bayesian network.
The objective of the neural network is to supply, or rather predict, an angle
based on previous observations. This output angle of the network is added
to the already calculated angle that the gun needs to turn, in order for the
gun turret to point straight at the target. The output can be seen as the
correction needed to be applied to the angle, if the target is not stationary.
When shooting at a stationary target, the neural network would not need to
correct the angle, and should output a value of zero.

There are a few observations to be taken into account. First we calculate
the spanning angle of the correction needed, as seen in Figure 6.3. This is
done because it is not possible for the target to actually move more than
8pixels

tick
, and the bullets fly with a velocity of at least 11pixels

tick
. This gives us a

spanning angle of approximately 94 degrees, see Equation 6.3, and since the
target cannot move outside this targeting cone before it is either passed or
hit by the bullet, we can narrow down the output of the neural network from
360 degrees, to span over 94 degrees in the interval [−47, 47].



78 Machine Learning Design

First we calculate the angle using the rules that apply for right-angled trian-
gles:

A = sin−1(
8

11
) ≈ 47◦ (6.3)

This gives us an angle of approximately 47◦ that we multiply by two to get
the mirrored angle for the complete span. We now set the output of the net
to be a value in the interval [−47; 47].

For a robot to shoot, it needs to decide on where to shoot, and with what
power. Now that the neural network is able to calculate the angle correction,
and together with the relative bearing of the gun, we know how much to
turn the gun turret, but not what power to shoot the gun with. One idea is
to incorporate this power into the neural network, and let the net learn by
itself what the appropriate power value should be in a given situation. It was
however decided to leave this out of the design of neural network in order
to simplify the representation and give us a precise model for anticipating
the correction angle of the shot. It was assumed this smaller representation
would give a better result.

Another idea was to use some form of decision support system to learn the
appropriate power to fire the gun with, but instead it was decided that a
static function should be used for calculating the power of a shot. Equation
6.4 represents this static function.

pow(dist) =





3.0 if dist < 500
1.0 if dist < 1200
0.0 otherwise

(6.4)

where dist denotes the distance to the target.

Input

Based on what the output is, we can examine the various inputs to be taken
into account. Below is a list the basic things that can influence the correction
angle for the shot.

• Enemy heading

• Enemy velocity

• Gun bearing



6.3 Aiming System 79

• Distance

Enemy heading is the basic information that gives us a relative heading for
the target at hand. For the neural network to successfully calculate the
correction angle, the aiming support system needs to know whether the
target is moving to the left or to the right, relative to when the gun is
pointing straight towards the target. Consider a target that is driving
straight ahead heading right, which would give us a relative heading of
90 degrees. The aiming support system should ideally learn to shoot a
bit to the right of the target, in order to hit the robot.

Enemy velocity gives us the information of how fast the target is moving.
Now that the aiming support system knows the direction in which the
target is moving, it needs to know how fast the target is moving, in
order to successfully calculate the correction angle.

Gun bearing gives us the relative angle of where the gun turret is currently
pointing. If the gun turret is 30◦ off from where it needs to be pointing,
it will have to turn −30◦ before it can actually shoot. This gives the
support system a chance to adjust for the time it takes the gun turret
to turn from its current angle to where it needs to be. This will buy
us time since it takes a few time units to achieve the correct position
of the gun turret.

Distance is the raw distance to a target. With the target heading, velocity,
and distance, the support system has enough information to make a
qualified guess of where the target will be when the bullet reaches its
proximity. There is one thing to be noted though. The bullet speed will
have an impact on the correction angle, but this information is actually
hidden inside the distance input, because the speed is a function of the
distance. So given a distance, the support system will know exactly
how fast the bullet flies, and will thereby be able to predict the right
correction angle.

Model

We can use the input and output of the neural network to create a represen-
tation of the neural network associated with the aiming support system. In
Figure 6.4 a simplified model of the neural network can be seen.



80 Machine Learning Design

Figure 6.4: A simplified overview model of the neural network.

6.3.2 Training the Network

To train the network, the backpropagation algorithm was chosen. The algo-
rithm is described in Section 3.3.5, and it is as far as we know one of the most
commonly used algorithms for training neural networks. Further reasons for
choosing the backpropagation algorithm are that it is easy to implement, and
that it is usually described as a good approach that generally performs well
according to Jörg P. Müller[8]. One of the drawbacks with the algorithm is
that it is relatively slow, but the alternatives seemed to be either just as slow
or even slower. That being said, faster alternatives are available, such as the
Simplex algorithm [2]. But this was ruled out due to uncertainties regarding
whether or not the Simplex algorithm would converge to the right value in
our situation. Another drawback is the problem of ending up in a local min-
imum, as described in Section 3.3.5 and 3.3.6. This problem could be solved
by using Simulated Annealing [1] algorithm, which guarantees to end up in a
global minimum. However, the Simulated Annealing algorithm is very slow
[1], so the final decision was to accept the drawbacks of the backpropagation
algorithm, and use this as a training module. This choice was also based on
the fact that it is such a well documented and widely known algorithm.



6.4 Move Patterns 81

Momentum

The last thing to be considered during the design of the aiming support
system, was the adding of a momentum as described in Section 3.3.6. Using
momentum should give us less chance of ending in a local minimum. It is
meant as an optimization to the backpropagation algorithm, and should serve
as further assurance that the network actually learns the right things.

6.4 Move Patterns

It was decided to use a genetic algorithm for making decisions of where to
head for in order to control the motion of the robot. These decisions should
be based on the following:

• The robots own position, velocity, and heading

• The position of the opponents (their x and y coordinates), velocity,
heading, and bearing

• The position of the teammates, velocity, and heading

• The position of all robots and bullets, as well as their heading and
velocity

• The size of the battlefield

When the information in the list above have been used to form a basis for the
next move, something as simple as a pair of coordinates will be output. This
set of coordinates can be translated into an angle and a distance, which can
be used directly in Robocode. The general structure of a genetic algorithm
can be seen in Figure 3.4.1. Because of this knowledge, we come to the
conclusion that the design criteria for our algorithm are:

• The algorithm must support on-line learning

• The algorithm must be able to perform on inputs of different lengths

• A fixed structure format to hold the vector functions



82 Machine Learning Design

Figure 6.5: The internal distribution of the vector function

Because the algorithm must be capable of performing on-line learning, it
must be able to produce a new population without restarting the Robocode
environment. A data structure containing an array of values can be used
to store each individual in a population, and will be able to be modified on
runtime. Vectors are known from mathematics to be a good way to describe
motion, and can be easily stored in arrays.

Vector functions are normally considered as a good description of motion in a
plane, and they also provide a pair of coordinates as output, just as we need.
Therefore these coordinates were chosen to be the target of the evolution
performed by the genetic algorithm.

Now we will describe how to implement the following things:

• How to guarantee a fixed structure in which to hold the vector func-
tions.

• The genetic operators (mutation and crossover)

• A way to collect the fitness values of the vector functions used.

• A Fitness threshold of the algorithm

A fixed structure could be guaranteed if the algorithm had the following
extra inputs: the number of variables and the order n of the polynomial
used for approximating a value of a given variable. If the number of
variables and the order of the polynomial are the same for all the vector
functions, the vector functions could be stored as an array containing
only the weights, as shown in Figure 6.5. Since it would be nice to
be able to express weights as floats, we have chosen to represent the
weights with a double in Java. This also cope well with the fact that
all movement in Robocode is measured in doubles.

The crossover operator could, if the vector functions are kept, be made on
the variable level or at the weight level. The weights or variables could
be copied to two new arrays as described in Section 3.4.3.



6.4 Move Patterns 83

The mutation operator could be implemented by picking a random weight
in the array, and then changing it to something else.

The fitness value could just be a number stored together with the arrays.
Since it is not easy to tell if a given move is a bad or good one, it
would be nice to have a fitness value that would represent an overall
performance of the vector function. The following things are events in
Robocode, and should provide some information about how well the
move layer works:

1. The robot collides with another robot

2. The robot collides with a wall

3. The robot gets hit by a bullet

4. A fired bullet leaves the battlefield

5. A fired bullet hits an enemy robot

The first four items should be given negative numbers. The first three
items are given negative numbers because it involves a loss of energy.
The fourth item is given a negative number because the gun layer
missed a target. The reason for this is that the move layer should
always position the vehicle so that gun layer has the best chance of
hitting a target. If an enemy target is hit, we reward the move layer
for positioning the vehicle so the gun was able to hit the target. All of
this combined should make it possible to make an overall fitness value
for a given vector function.

The fitness threshold should represent a goal for when a sufficiently good
vector function has been produced. Since there is just one positive
event that can occur, a high fitness value must indicate that a good
vector function has been found.

We now have an algorithm that is capable of taking a different number of
variables, a format for which it is easy to implement genetic operators, and
a way to collect the fitness values for the vector functions.

This chapter has finalized the analysis and design of our robot, as well as out-
lined the machine learning techniques needed to implement decision support
systems in our robot. The following chapter contains detailed descriptions
of our implementation.





III
Implementation, Test and

Conclusion





7Implementation

In this chapter we will provide in-depth descriptions of how the highlights of
various components of our Robocode robot has been implemented.

7.1 Target Selection

We have decided to implement the target selection Bayesian network only,
since the process of implementing the Bayesian network for selecting the over-
all strategy would be very similar to implementing the target selection. This
was also due to the fact that it was decided to put more effort into other ar-
eas of the implementation. This section will continue using the abbreviations
from Section 6.1.

When implementing the Bayesian network it was decided to remove the
Friends targets variable since we only need the input variables and the
single output variable, so that the Bayesian network looks like the one in Fig-
ure 7.1(a). This makes the network a bit larger. In Target alone there needs
to be specified |D|×|DE|×|E|×|OE|×|F1|×|F2|×|F3|×|F4|×2 = 204800
probabilities. This, although possible, is not considered a good solution, sim-
ply because the chance of seeing the same configuration twice in a game is
very little, and therefore there needs to be a tremendous amount of off-line
learning to get a good reference.

7.1.1 Size Does Matter

The Friends targets variable is reintroduced and Friend{1-4} is removed,
so that the Friends targets variable now represents all of the other friends,



88 Implementation

(a) (b)

Figure 7.1: Steps taken towards minimizing the Bayesian network size

see Figure 7.1(b). This would require that there be specified 4 × 4 × 4 × 4
probabilities in this variable. It was also decided that it was not necessary
to know if your friends were dead or had no target, but only whether they
had the same target or not. Furthermore we decided to reduce the number
of states to three, or more precisely the states 0, 1, and ≥ 2, meaning that
0 teammates has selected the target in question, 1 teammate has the target
in question, and 2 or more teammates has selected the target, respectively.
This has reduced the total number of probabilities that needs to be specified
to 2400, and reduced the size to 2400

204800
≈ 1

85
of the original.

7.1.2 Representation

The variable Target has two states, one that represents winning the battle
against the currently selected target and another that represents loosing the
battle. We have evidence on all other variables, so there is no need to store
their probabilities. Because the Target variable has two states and since
the network will use fractional updating, it is sufficient to store only three
integers: the number of times we have seen a given configuration (s), the
number of times we have won (nw) in this configuration, and the number of
times we have lost (nl). The probability of winning is nw

s
and the probability

of loosing is nl

s
. From Definition 7 we know that nw

s
+ nl

s
= 1 ⇔ nw+nl

s
=

1 ⇔ nw + nl = s, meaning that it is not necessary to store s, hence there
only needs to be stored two integers for each configuration. The probability
of winning is nw

s
= nw

nw+nl
.



7.2 Aiming System 89

¨ ¥
1 private stat ic int [ ] [ ] [ ] [ ] [ ] [ ] weights = new int [ 4 ] [ 4 ] [ 5 ] [ 5 ] [ 3 ] [ 2 ] ;
2
3 public double getScore (a1 , a2 , a3 , a4 , a5 ) {
4 return weights [ a1 ] [ a2 ] [ a3 ] [ a4 ] [ a5 ] [ 0 ] / ( weights [ a1 ] [ a2 ] [ a3 ] [ a4 ] [

a5 ] [ 0 ]+ weights [ a1 ] [ a2 ] [ a3 ] [ a4 ] [ a5 ] [ 1 ] ) ;
5 } public void updateScore (a1 , a2 , a3 , a4 , a5 ,whowon) {
6 weights [ a1 ] [ a2 ] [ a3 ] [ a4 ] [ a5 ] [whowon]++;
7 }§ ¦

Listing 7.1: Pseudo code for part of the Bayesian network implementation

7.1.3 Data Storage

The probabilities could be stored in a 6-dimensional array as seen in Listing
7.1, and then simply incrementing one of the values will give us the new
probability table. Also getting the probability of an event occurring is only
two memory lookups and a few simple arithmetical operations, making this
representation very fast and small in size.

7.1.4 Initialization

When creating this Bayesian network, it is obvious that if we initialize all
the weights to 0, there would be a division by zero error on a lot of
getScore() method calls. It was then decided to initialize every entry in the
array to 1, making the probability of a given configuration 0.5 initially. This
also has the advantage that nothing will ever have a probability of 0.

7.2 Aiming System

We designed the neural network as a feedforward net, using the backpropa-
gation algorithm. Implementation of the neural network is a straightforward
process, as the algorithms are very easy to implement in Java. After imple-
menting the neural network, we had to decide which parameters to feed the
network, and which output it should yield. The aim function is assigned a
target, and is then in charge of deciding how much the gun shall be turned
before firing, in order to hit. The neural network will be fed a binary string.
We decided that the neural network should have the following parameters as
input:

Enemy relative heading. This is a number between 0 and 360. In order to
represent these numbers we need nine bits.



90 Implementation

Enemy velocity. This is a value between −8 and 8. We need to represent 17
different values, and so we need five bits. We do not want the neural
network to deal with negative numbers, so before feeding this variable
to the neural network, we add 8 to it.

Our gun bearing. The number we need to input is in the same format as
the enemy relative heading, so we need nine bits for this value.

Distance to enemy. Since the largest possible battlefield in Robocode has a
size of 5000 by 5000, the largest possible distance to an enemy is

a2 + b2 = c2

√
50002 + 50002 = c ≈ 7071

for which we need 13 bits.

This gives us a total input of 36 bits.

Figure 7.2: An example of a bit-representation input to our neural network.

As described in the design of our neural network in Section 6.3.1, we want
the network to output an angle, telling us how much the gun shall be turned,
anticipating the target’s movement, in order to hit the enemy robot. For
this we need to represent up to 94◦, which is seven bits, since it is only the
correction to an angle and not the exact angle.

One training example is a bit-representation of the input followed by a bit-
representation of the target output.

010100111000100110101110010100111110 1001110

The last seven bits represent the optimal output from the network given
the 36-bit input. We have two ways of training the network with such an
example: off-line and on-line learning.



7.2 Aiming System 91

7.2.1 Off-line Learning

As a result of the restriction in how much CPU time a robot can use in each
tick, it could be a necessity to teach the robot outside the game. To use
the off-line learning, we play some games in Robocode and collect relevant
data, which is then written to a file. After we have collected the data, we
construct a neural network with random weights or weight from an previous
saved weight file. The backpropagation algorithm is used on the training
examples. The number of times the data is passed through the network is
dependent on how accurate we want the network to be. If we use too large
a number of hidden neurons we get the risk of overfitting the network, so
that the network will only recognize those exact examples and nothing else.
When all training examples have been passed through the backpropagation
algorithm, the weights are saved to disk. This file of weights can then be
used when battling in Robocode.

7.2.2 On-line Learning

Alternatively, by using on-line learning, we can battle against other robots
and be able to learn to anticipate movement patterns of the enemy while
competing. In principle, on-line learning is almost the same as off-line learn-
ing, the difference being that when learning on-line, we learn while playing
Robocode. Instead of writing the input data to a file, the network receives
it as input immediately, and updates the weights while playing. On-line
learning is done for each shot fired by the gun like this:

1. Input x to the neural network and calculate the output

2. Shoot, corrected by the output angle

3. Save the data used for shooting

4. Wait to receive either a hit or a miss event from the bullet fired

5. Construct a training example from the saved data and the hit/miss
event

6. Train the neural network with the training example using the back-
propagation algorithm

In step five we construct a training example using the saved data and the
information from the received event, plus the information collected since the



92 Implementation

bullet was fired. Using all of this data we will know the exact movement
of the target and we can construct an algorithm to calculate the optimal
shot for the circumstances the robot was in at the time the bullet was fired.
When calculating this we get both the input and the output for the training
example, and when we have this information about the optimal shot we can
update the weights in the network accordingly.

Figure 7.3 shows how the algorithm calculates the optimal shot for updating
the neural network. The circles represent recorded positions of the enemy
target and the straight lines represent how far the bullet was able to travel
towards the enemy’s position. The filled circle is the first instance where the
bullet was able to actually hit the target. This shot becomes the optimal
solution as the target value for the training example.

Figure 7.3: Calculation of the optimal shot

We only run the training example through the backpropagation algorithm
once because of the time restriction that applies. So after each shot the
weights will be updated and thereby making the robot’s aiming support
system better for each bullet the robot fires.

7.3 Move Pattern

This section will explain how the genetic algorithm and its utilities are im-
plemented to fit the Robocode environment. The algorithm performs on-line
learning for the following reasons: The fitness values of the single vector



7.3 Move Pattern 93

functions are collected, and the genetic operators are applied during the ex-
ecution of Robocode. In other words new populations are created during
execution.

The structure

It was chosen to implement an algorithm that produces vector functions. The
vector functions could then be called in every tick to calculate a new pair of
coordinates to head for. The algorithm has the following parameters:

• Size of the population

• Mutation rate

• Elitism rate, which tells how much of a population will be moved un-
changed from one population to the next

• The number of variables. For example f(x, y, z) has three variables, x,
y, and z.

• The order of the polynomial that should be used to approximate a
variable input.

• The size of the weights that are used in the equations.

The algorithm is implemented using two classes, GA and MovePattern.

The GA class, which has a constructor that takes the parameters listed above,
holds the main loop of the algorithm and acts as a container for all the
MovePattern classes that are currently in use by the algorithm.

The MovePattern class holds a movement pattern, which is basically a vector
function with added methods for mutation and crossover, plus a method for
calculating the output of the vector function. The vector function part is
stored in two arrays of doubles, one array for calculating the x coordinate
and another array for calculating the y coordinate. In Figure 6.5 one can
see how these arrays are constructed. The calculate method is used in every
tick to calculate a new set of coordinates to head for. The doubles stored
within the arrays are used as coefficients in the equations within the vector
function. An example of one of these equations can be seen in Equation 7.1,
where the wn’s are the coefficients and x is the input.

w1 · x3 + w2 · x2 + w3 · x + w4 (7.1)



94 Implementation

The calculate method evaluates every equation within the vector function
and returns the total summed result. This procedure is done for both of the
arrays.

The MovePattern class also contains its own fitness value. How this value is
collected and used by the algorithm will be explained later in this section.

Crossover. For every crossover operation that is performed, a crossover
mask is made. The crossover mask is an array of 0s and 1s with length
equal to the number of variables we are performing the crossover on.
The crossover type used by the algorithm is called uniform crossover
and its principal operation can be found in Section 3.4.3. It was chosen
to make the crossover on the variable level. The idea behind this is that
when a good set of weights are found there is no reason for ruining these,
which would have been the case if the crossover had been performed on
the weights level, making the crossover produce almost random data,
which is the job of the mutation operator.

Mutation. This operator is simple. A random number between 0 and the
length of the array, in which the movement patterns are stored, is picked
and then changed into another number that is provided along with the
interval as input. This is done for both arrays.

The Algorithm

Now we know how the different parts of the algorithm are implemented, but
it has not yet been clarified how the different parts work together. When
Robocode is started, and there exists no file with data collected earlier, a
number of random movement patterns are created. The number of movement
patterns created depends on the input given to the algorithm. If there exists
a data file, the movement patterns from the file are loaded. Every movement
pattern is given a number of rounds to collect a fitness value. When all move
patterns have received a fitness value and have completed their number of
rounds, the following steps are performed

1. The movement patterns are ranked according to their fitness value

2. Elitism is performed

3. Crossovers are performed

4. Mutations are applied



7.3 Move Pattern 95

Figure 7.4: The rank selection array

5. The weights are stored to disk

6. The algorithm starts over again

The selection function. We chose to use rank selection. The selection func-
tion is used when performing crossovers in the algorithm, in order to
decide what patterns should be crossed with each other. Every time
a crossover is performed, two random numbers between zero and the
number of used movement patterns are picked. These numbers are used
as indexes in the rank selection array. The rank selection array is made
the following way:

• The movement patterns are ranked in increasing order

• The size of the rank selection array is found using Equation 7.2,
where s denotes the size and n is the number of individuals in the
population

• The rank selection array is built, see Figure 7.4

s =
n + 1

2
· n (7.2)

The fitness value. The collection of fitness values of the individual movement
patterns are implemented as follows. When a movement pattern gets
its turn it starts with zero as its associated fitness value. The following
list shows what increases or reduces the fitness value.



96 Implementation

• If the robot collides with another robot, the fitness value is reduced
by one

• If the robot collides with a wall, the fitness value gets reduced by
three

• If the robot gets hit by a bullet, the fitness value is reduced by
one

• If a fired bullet leaves the battlefield without hitting an enemy
robot, the fitness value gets reduced by one half

• If a fired bullet hits an enemy robot, the fitness is increased by
three

The fitness threshold. Finding the correct fitness threshold should be part
of performing tests, in order to see how well the algorithm performs.
A fitness threshold of 30 seems like a reasonable value to start with. A
value of 30 could mean a robot firing 10 times where all the 10 bullets
hit an enemy robot.

Now that we have implemented the robot, we have to perform tests to see if
the robot is able to adapt to enemies during a game. The following chapter
will cover these tests.



8Test
This chapter will describe the design and implementation of the testing of
the machine learning systems used in our robot.

8.1 Target Selection

Target selection is the task of selecting which of the opponents to attack,
based on different criteria. An example of a criteria could be distance, be-
cause it is most likely not a great idea to select targets that are 3,000 pixels
away.

8.1.1 Design

A test of the target selection should show that the Bayesian network becomes
better at selecting targets over time. To test this we could run a large num-
ber of rounds–no less than 20,000–and not change any of the game settings
or enemy robots nor use any kind of machine learning in these rounds. The
rounds should be played against a team that does not use machine learning
techniques, such as sampleteam.MyFirstTeam, which is a simple team pro-
vided by the standard Robocode package. By using a standard team we are
ensured that any improvement of our team will be apparent. Had we battled
against a team that utilizes machine learning techniques, improvements of
our team might not be visible due to the other team improving faster than
ours.

The reason for the test having to be based on at least 20,000 rounds, is that
the Bayesian network is only updated a few times in each round, and since



98 Test

there are 2,400 different configurations, we have to run a large number of
rounds in order to see a clear result.

The test is successful if there is an improvement in the number of rounds
won.

8.1.2 Implementation and Conclusion

Due to the limited amount of resources within this project, we have chosen
not to implement this test.

8.2 Aiming System

The aiming system is a vital part of the implementation of our robot. With-
out it one would probably never win as much as a single game. The overall
performance of a robot depends heavily on the ability to hit targets in a
game, therefore a test of the aiming system is essential.

8.2.1 Design

Intuitively, a test of the aiming algorithm could easily be carried out by
logging how often the robot hits a target compared to the number of bullets
fired. The test must be carried out on a 2000×2000 pixel map with standard
rules against the standard robot sample.Crazy, which is a robot that seems
to move in random patterns, but actually follows a simple mathematical
equation. One could argue that choosing this single target is not sufficient,
but it will definitely show us if the network has the ability to learn how to
hit a moving target.

The movement layer in the OurRobot class is modified, so that the distance to
a target is approximately the same at all times. The recommended distance
is 400 pixels but this can be changed if another distance characterizes the
robot better. The reason for this modification of the movement layer is to
ensure that it is actually the neural network that is learning, and not the
genetic algorithm used to control the movement.

An initial test should measure the ability of our robot to learn. The test
should run over a series of rounds and the hit accuracy of each round should
be logged to see if there is an improvement.



8.2 Aiming System 99

Another series of tests should be performed on a number of configurations,
hidden neurons, and learning rates, in order to find the best possible com-
bination. These tests should be performed using the same initial weights,
because random weights could lead to inconsistencies in the results of the
tests. Furthermore, each configuration should be tested over a number of
rounds in order to let the network adapt to the configuration in question.
The number of rounds is chosen to be 300. The tests should conclude on
which configuration is the most profitable.

8.2.2 Implementation

The first test is implemented using two integers–one that is incremented each
time a bullet is fired (s), and one that is incremented each time a bullet hits
(h). The result is the ratio h

s
, which is calculated at the end of each round.

The variables s and h are reset to zero at the beginning of each round. The
result is plotted on a graph in Figure 8.1.

Movement is done by using a special movement module only used for testing
purposes. This movement module ensures an average distance to the target
of 400 pixels. The robot starts firing when a target is scanned, even if the
distance to that target is 1200 pixels. But since this will probably happen in
all rounds, it will not have an effect on the overall result.

The second test is implemented like the first one, where different configura-
tions are tested. The average of all rounds is plotted on a graph in Figure
8.2.

8.2.3 Conclusion

Looking at Figure 8.1 it is clear that the neural network is able to learn to
predict the movement of enemy robots. There is a substantial improvement,
especially in the early learning phase.

The second test, whose results are plotted in the graph in Figure 8.2, shows
that one should be careful when choosing a configuration. Depending on
which environment the robot is operating in, different configurations will
provide optimal performance. In general, many hidden neurons and small
learning rates are slower converging than a small amount of hidden neurons
and high learning rates are.

The test has been carried out using 300 rounds for each configuration. If the
number of rounds was increased, the result could be significantly different.



100 Test

Figure 8.1: The hit accuracy from the test results and a trendline

Generally, configurations with high learning rates and a small hidden neuron
count are faster to adapt to new environments, whereas configurations with
a high hidden neuron count and small learning rates are more precise in a
homogeneous environment.

Figure 8.2: The hit accuracy from the test results using different configura-
tions

In conclusion to the first test, it is obvious that our robot has the ability to
learn, meaning that the neural network is working. Possible improvements
could be not to fire over wide distances, since these shots have a low probabil-
ity of hitting the target. It is also plausible that inputs to the neural network



8.3 Movement Pattern 101

could be extended with further information, leading to higher accuracy. The
second test shows that depending on how many rounds are played in a game,
different configurations could be chosen. For a game consisting of 300 rounds,
Figure 8.2 shows that the best configuration is a hidden neuron count of 20
and a learning rate of 0.5, or possibly a configuration with 3 hidden neurons
and a learning rate of 0.1, which has approximately the same accuracy as
the other configuration, but a lower neuron count performs better because
of faster calculations.

8.3 Movement Pattern

The movement algorithm is essential for surviving in the Robocode scenery
and can be the direct cause for a significant amount of energy loss, if e.g. two
robots collide, a robot hits the wall, or a robot fails to steer free of a bullets
path.

8.3.1 Design

In order to test the genetic algorithm a population must be bred for a large
amount of generations. This is because evolution of the genetic algorithm
takes a lot of generations to evolve into a useful solution.

We need to develop a test where the robot involved utilizes no machine
learning, except for the genetic part of our implementation. To do this
we create a version of the OurRobot class that features only the genetic
algorithm, and not the Bayesian network nor the neural network. We do this
to purify our test results, meaning that the two other machine learning parts
of our implementation do not affect the data gathered by this test. Robocode
is set up to use a battlefield of size 1000x1000 throughout the test. We also
constrain the test to involve two robots only, where one is the sample.Crazy
robot and the other is the modified version of OurRobot.

All of these precautions should ensure that we construct a static environment
where only the inputs we want to test will be changed for each subtest. Below
we list the inputs tested during the testing of the genetic algorithm.

Test Inputs

As described in Section 7.3, the algorithm takes a number of parameters
which include:



102 Test

• Population size

• Mutation rate

• Elitism/crossover rate

These parameters together with

• The life span of an individual and

• The number of generations

will make up the input parameters we would like to include in the test. We
have decided to assign static values to the rest of the parameters mentioned
in Section 7.3, so these will not affect the test in any way. Note that in the
test we only list the elitism rate because the crossover rate is directly linked
by this equation.

crossover rate = (1− elitism rate).

The mutation method used is the single-point mutation. The crossover uses
the uniform crossover method. For selection, the rank selection method was
chosen. They are all described in Section 7.3.

Execution of The Test

Test execution will be divided into two main parts. The first part will consist
of two subcategories, where we test the mutation rate and elitism/crossover
rate. The second part will focus on both population size and long term
evolution, where we increase the life span of the individual robot and observe
the effect when increasing the time span of the evolution to consist of 200,000
consecutive games.

Output and Success

Each subtest will consist of a setup that explains what inputs were chosen,
a result in the form of a graph of the collected data, and finally a conclusion
that will comment on the result of the subtest. We have chosen to collect
the sum of all fitness values for each generation as data output of the test.
The fitness value of an individual, described in Section 7.3, represents how



8.3 Movement Pattern 103

well the move layer performs for the given individual. By choosing the total
fitness value of a generation as the output value, we are ensured that we get
the general fitness improvement of a generation, whether the value is positive
or negative.

A successful test will hopefully show us a graph that converges to some
maximum.

8.3.2 Test Output

This section will describe the various test outputs.

Mutation Rate

The primary setup for testing the effect of changing the mutation rate is as
follows:

• Population size: 25

• Mutation rate: tested

• Elitism rate: 0.1

• Lifespan: 20 rounds

• Generations: 25

We chose eight different values for the mutation rate ranging from 0.01 to 0.5.
According to Introduction to Genetic Algorithms [11], a reasonable mutation
rate would be 0.01, so we chose this as the initial value and then gradually
increased the mutation rate up to 0.5 in order to observe the effect.

The graph in Figure 8.3 shows us that during all subtests of adjusting the
mutation rate, we start out with a very low fitness value. Around the 6th
to 9th generation the graph starts to become stagnant, which means the
evolution rate starts to slow down. At the 13th generation we still observe
big fluctuations, but for every new generation the fluctuations lessen. At the
end we see that the set of graphs are pretty close together. Figure 8.4 shows
a close-up of the 6th to 9th generation, and Figure 8.5 shows a close-up of
the 13th to 20th generation.



104 Test

Figure 8.3: The test output for mutation rate

Figure 8.4: Close up of the 6th to 9th generation

Elitism Rate

The primary setup for testing the effect of changing the elitism rate is as
follows:

• Population size: 25

• Mutation rate: 0.03

• Elitism rate: tested

• Lifespan: 20 rounds

• Generations: 25



8.3 Movement Pattern 105

Figure 8.5: Close up of the 13th to 20th generation

We chose to use the exact same values for testing the elitism rate as we did
for the mutation rate, so it ranges from 0.01 to 0.5.

Figure 8.6: The test output for elitism rate

Figure 8.6 Shows the output when testing with respect to elitism rate. As we
saw when testing with respect to mutation rate, the graph seems to start with
low values and rising fast, and then stagnating around the 6th generation.

Long Term Testing

The primary setup for the long term test is as follows:

• Population size: 100



106 Test

• Mutation rate: 0.1

• Elitism rate: 0.1

• Lifespan: 20 rounds

• Generations: 100

The long term test was decided to have a population size of 100 individuals,
each having a lifespan of 20 rounds. This corresponds to 2,000 rounds per
generation, and running for 100 generations would give a total of 200,000
rounds. The test took about twelve hours to complete.

Figure 8.7: The output of the long term test

The graph in Figure 8.7 seems to be very similar to the other graphs we have
seen so far, but looking a bit closer reveals that given a larger population our
evolution rate seem to be slowing down around the 20th generation instead of
the 6th to 9th generation. But otherwise the graph follows the same pattern
and almost stagnates with little fluctuation.

8.3.3 Test Conclusion

We can see that in every test our fitness values starts off very low and rises
quickly during the first generations, and then after a number of generations
starts to converge to some maximum fitness value. We interpret this as
proof that our robot learns to cope with the environment we have placed
it in, moving more intelligently by avoiding walls, avoiding bullets, avoiding
collisions with other robots, and placing itself in better positions for hitting
targets.



8.3 Movement Pattern 107

We can see that the various tests with respect to mutation rate shows the
same evolution with little variation. An explanation could be found in the
implementation of the mutation function. In this function the mutation is
done by changing a single cell in the array that holds the vector functions.
Figure 8.8 shows a representation of the vector function array, in which we can
see that the different cells have different meaning. For instance, changing the
cell labelled x3

1 would have a much higher impact on the movement pattern
than changing the cell labelled w1 would, and this holds true for the fitness
value as well.

Figure 8.8: Representation of the problem with mutation

If the mutation is done on the lower three cells (x2
i , xi, and wi) after each

generation, the mutation would not have much effect on the fitness output.
We assume this is the reason for the small variation in the tests concerning
mutation rate.

After a certain point, around where the graph in Figure 8.6 starts to stagnate,
the individuals on which crossovers are performed start to resemble the elite
individuals. This is because of the huge evolution rate we have observed in the
beginning of the test, causing us to quickly converge to where all individuals
look very similar. At this point there is really no benefit in elitism, since the
individuals moved directly to next generation are so similar to the ones on
which crossovers have been performed.

For the tests concerning mutation and elitism, we see that when we hit
a fitness value of around −2,800 for an individual, no matter how many
additional generations are used, the fitness will just oscillate around this
particular value. We assume that this is the optimal fitness value for an
individual the fitness function can achieve with a population of 25. The long
term test in Figure 8.7, which showed the same tendency as the mutation
and elitism tests, reached an average fitness value of about −2,400 when the
evolution rate stagnated. But as seen in the graph in Figure 8.7, a larger
population means it takes longer to converge towards the value. So our
conclusion is that given a larger population we will have a better result, but
at the expense of time. Another conclusion is that the mutation and elitism
rate seem to be of no consequence in a small population.





9Conclusion

This chapter concludes this report by discussing what further development
our robot would go through had we had more time to spend on the implemen-
tation, as well as summarizing what we have achieved during this project.

9.1 Further Development

Looking back at this project there are many things that could be improved
on. First of all, because the robot developed was thought as a proof of concept
implementation, there is still a need for further testing and adjustments of
the variables in the various machine learning systems. For example, further
tests and adjustment of the number of hidden neurons and learning rates of
the neural network could be performed on additional battles against other
enemies.

We are especially proud of the aiming algorithm that learns much faster than
we had expected. This being said, we expect that the performance could be
even better if the robot went through further development. Especially the
input to the network could be extended in order to get even higher precision.

Other inputs for the neural network might be considered. An example is
previous moves done by the enemy. Tests could be performed to see if such
a modification would improvement on the hit accuracy.

As discussed in Chapter 7, the retreat layer as well as the Bayesian network
for choosing an overall strategy has not been implemented. These are of
course subjects for further development.



110 Conclusion

9.2 Conclusion

We have managed to implement three different machine learning technolo-
gies resulting in a team of autonomous robots for the Robocode environment.
These three technologies include a neural network for the aiming system, a
Bayesian network for the target selection, and a genetic algorithm for con-
trolling movement of the robots. We have chosen to implement the robots
using a hybrid agent architecture, meaning that they make use of the best
of both reactive as well as deliberative systems.

On-line learning has been implemented in order for the various components
of the robots to be able to adapt to the environment in which they operate
and the enemies they face. We have used the test chapter to show that our
robot has the ability to learn during a battle.

Team behavior has been implemented using decentralized coordination, which
means that each of the robots must maintain a world model of their own,
and therefore they do not depend on having to protect a leader.

As we have shown throughout the project, we have developed an understand-
ing of using decision support system on a somewhat real-life-like application.
We feel that we have gained enough knowledge or at least interest to make
use of these technologies in projects to come as well as in other contexts.



Bibliography

[1] Daniela M. Bailer-Jones. Modelling data: Analogies in neural networks,
simulated aannealing and genetic algorithms. http://www.mpia-hd.

mpg.de/homes/calj/mbr01.pdf, 2004.

[2] David Barrett. Learning algorithms for self evolving robot controllers.
http://www.rdg.ac.uk/scarp/resources/siu00drb.pdf, 2004.

[3] Derek Bridge. Deliberation. http://www.cs.ucc.ie/∼dgb/courses/
ai/notes/notes13.pdf, 2003.

[4] Jochen Froehlich. Neural networks with java. http://rfhs8012.

fh-regensburg.de/∼saj39122/jfroehl/diplom/e-12-text.html#
TypesOfNeuralNets, 2004.

[5] Finn V. Jensen. Bayesian Network and Decision Graphs. Springer, 2001.

[6] Christian Krause. Robocode faq. http://robocode.alphaworks.ibm.
com/help/robocode.faq.txt, 2004.

[7] P. Mehra and B. W. Wah. Artificial Neural Networks, concept and
theory. Society Press, 1992.

[8] Tom M. Mitchell. Machine Learning. McGRAW-HILL INTERNA-
TIONAL EDITIONS, 1997.

[9] Jörg P. Müller. The Design of Intelligent Agents - A Layered approach.
Springer, 1996.

[10] Thomas D. Nielsen. Decision support systems and machine learning.
http://www.cs.auc.dk/∼raistlin/Teaching/BSS04/, 2004.

[11] Marek Obitko. Introduction to genetic algorithms. http://cs.felk.

cvut.cz/∼xobitko/ga/, 1998.

[12] Anet Potgieter. Agent architectures. http://www.cs.uct.ac.za/

courses/CS400W/AI/Resources/Agent%20Architectures.PDF, 2004.



112 BIBLIOGRAPHY

[13] David F. Cherno Thomas J. Loredo. Bayesian adaptive ex-
ploration. http://astrosun.tn.cornell.edu/staff/loredo/bayes/

bae.pdf, 2004.

[14] J. M. Zurada. Introduction to Artificial Neural System. St. Paul, 1992.

All URLs are valid as of December 17th.


